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Regional quarantine policies, in which a portion of a popula-
tion surrounding infections is locked down, are an important
tool to contain disease. However, jurisdictional governments—
such as cities, counties, states, and countries—act with minimal
coordination across borders. We show that a regional quarantine
policy’s effectiveness depends on whether 1) the network of inter-
actions satisfies a growth balance condition, 2) infections have
a short delay in detection, and 3) the government has control
over and knowledge of the necessary parts of the network (no
leakage of behaviors). As these conditions generally fail to be sat-
isfied, especially when interactions cross borders, we show that
substantial improvements are possible if governments are out-
ward looking and proactive: triggering quarantines in reaction
to neighbors’ infection rates, in some cases even before infec-
tions are detected internally. We also show that even a few lax
governments—those that wait for nontrivial internal infection
rates before quarantining—impose substantial costs on the whole
system. Our results illustrate the importance of understanding
contagion across policy borders and offer a starting point in
designing proactive policies for decentralized jurisdictions.

contagion | network | quarantine | lockdown | coordination

G lobal problems, from climate change to financial crises to
disease control, are hard to address without policy coor-

dination across borders. Carbon emissions in one region are
everyone’s problem, as are financial collapses, as well as the
spread of an infectious disease. Coordinating policies across
jurisdictions in terms of both timing and scale is important when-
ever problems have spillovers. In this paper we shed light on this
problem by examining how different types of decentralized poli-
cies fare compared to more centralized policies at containing the
spread of an infectious disease.

In particular, pandemics, like COVID-19, are challenging to
contain if governments fail to coordinate efforts. Without vac-
cines or herd immunity, governments have responded to infec-
tions by limiting constituents’ interactions in areas where an
outbreak exceeds a threshold of infections. Such regional quar-
antine policies are used by towns, cities, counties, states, and
countries and trace to the days of the black plague. Over the past
150 y, regional quarantines have been used to combat cholera,
diphtheria, typhoid, flus, polio, Ebola, and COVID-19 (1–4), but
rarely with coordination across borders.

Decentralized policies across jurisdictions have two major
shortcomings. First, governments care primarily about their own
citizens and do not account for how their infections impact other
jurisdictions: The resulting lack of coordination can lead to worse
overall outcomes than a global policy (5–7). Second, many gov-
ernments are inward looking, paying attention only to internal
situations, which leads them to underforecast their own infection
rates.

We examine three types of quarantine policies to understand
the impact of noncoordination: 1) those controlled by one actor
with control of the whole society—“single-regime policies”; 2)
those controlled by separate jurisdictions that are inward looking
and react only to internal infection rates, or “reactive” for short;
and 3) those controlled by separate jurisdictions that are outward

looking, tracking infections outside of their jurisdiction as well
as within to forecast their infection rates when deciding when to
quarantine, or “proactive” for short.

We use a general model of contagion through a network to
study these policies. We first consider single-regime policies. A
government can quarantine everyone at once under a “global
quarantine,” but those are very costly (e.g., lost days of work,
school, etc.). Less costly (in the short run), and hence more
common, alternatives are “regional quarantines” in which only
people within some distance of observed infections are quaran-
tined. Regional quarantines, however, face two challenges. First,
many diseases are difficult to detect, because either some indi-
viduals are asymptomatically contagious (e.g., HIV, COVID-19)
(8–10) or a government lacks resources to quickly identify infec-
tions (11, 12). Second, it may be infeasible to fully quarantine a
part of the network, because of difficulties in identifying whom
to quarantine (e.g., imperfect or inefficient contact tracing) or
noncompliance by some people—by choice or necessity (13–18).
Either way, tiny leakages can spread the disease.

We show that regional quarantines curb the spread of a dis-
ease if and only if 1) there is limited delay in observing infections,
2) there is sufficient knowledge and control of the network to
prevent leakage of infection, and 3) the network has a cer-
tain “growth balance” structure. The failure of any of these
conditions substantially limits regional quarantine effectiveness.

We then examine jurisdictional policies, which are regional
quarantine policies conducted by multiple, uncoordinated
regimes. The regions that need to be quarantined, however, often
cross borders, leading to leakage that limits their effectiveness.

Significance

The lack of coordination between governments on systemic
problems, from climate change to financial contagions, has
large costs that are well exemplified by a pandemic. We
identify which quarantine policies are effective in curbing an
outbreak and use that to understand how governments’ pri-
oritization of their own populace and failure to coordinate
with neighbors cause quarantines to fail, leading to repeated
waves of a disease. Instead, if governments share informa-
tion and anticipate infections from other jurisdictions, then
infections are reduced by an order of magnitude. However,
just a few lax governments create jurisdictions that repeat-
edly incubate a disease and substantially worsen the outcome
for everyone. Our techniques should be useful in studying
networked interactions across other domains.
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As we show, jurisdictional policies that are reactive do much
worse than proactive ones, as they do not forecast the impact
of neighboring jurisdictions’ infection rates on their own popu-
lation. Moreover, a few lax jurisdictions, which wait for higher
infection rates before quarantining, worsen outcomes for all
jurisdictions.

A Model
Consider a large network of n individuals or nodes. Our the-
ory is asymptotic, stating properties that apply with a probability
approaching one as the population grows (n→∞). Our theoret-
ical results consider sequences of networks as n grows, while the
simulations are on given networks with thousands of nodes.

An infectious disease begins with an infection of a node i0,
the location of which is known, and expands via (directed) paths
from i0. In each discrete time period, the infection spreads from
each currently infected node to each of its susceptible contacts
independently with probability p. A node is infectious for θ
periods, after which it recovers and is no longer susceptible or
contagious, although our results extend to the case in which a
node can become susceptible again.

The disease may exhibit a delay of τ ≤ θ periods during which
an infected and contagious person does not test positive. This can
be a period of asymptomatic infectiousness, a delay in testing, or
limits to healthcare access (8, 10–12, 19, 20). After that delay,
each infected node’s infection is detected with probability α< 1
(for simplicity, in the first period after the delay). α incorporates
testing accuracy, availability, and decisions to test.

This framework nests the susceptible–infected–recovered
(SIR) model and its variations including exposure, multiple
infectious stages, and death (18, 21–24); agent-based models
(25–27); and others.

Results
Baseline: A Single Jurisdiction with Complete Control. We begin
by analyzing a single jurisdiction with complete control or,
equivalently, the entire network being one jurisdiction with one
policymaker.

A (k , x ) -regional policy is triggered once x or more infec-
tions are observed within distance k from the seed node i0, at
which point it quarantines all nodes within distance k +1 of the
seed for θ periods. This captures a commonly used policy where
regions that are exposed to the disease are shut down in response
to detection. We begin by giving the policymaker the advantage
of knowing which nodes are within distance k +1 of the seed,
which could reflect rapid and efficient contact tracing supple-
mented with rich network data. We later explore how errors
in this knowledge change the results. We also give the policy-
maker knowledge of which node is the seed and study subsequent
containment efforts. In practice, policymakers must estimate the
origin of infection, which presents an additional challenge.

Whether a regional policy halts infection is fully character-
ized by whether the sequence of networks satisfies what we
call growth balance. This requires that as the networks become
large, all paths along which the disease might escape beyond the
regional quarantine of distance k +1 are such that at least some
nodes have many neighbors. In particular, for the sequence of
networks to be growth balanced with respect to k , there must
exist m(n)→∞ such that in a network with n nodes, every path
leading from i0 to a node at distance k +2 has at least one node
with degree at least m(n). This condition ensures that if an infec-
tion does spread along some path that can take it outside of the
region, then, at some point along the way, it is very likely to infect
many nodes and thus be detected before it reaches the edge of
the region.

To better understand growth balance, consider an example of
a disease that is beginning to spread with a reproduction number
R0 of 3.5 and such that 1 in 10 cases is detected in a timely man-

ner (α=0.1). First, consider a part of the network in which each
infected person infects 3.5 others on average. If we monitor all
nodes within distance k =3 of an infected node, a “typical” path
of infection would lead to roughly 3.5+3.52 +3.53 =58.625
expected cases before it reaches the edge of the region. The
chance that this goes undetected is tiny: 0.958.625 =0.002. In con-
trast, suppose the infection starts in a part of the network where
each infected person infects just one other, on average, so that
the local reproduction number here is R0 =1 rather than 3.5.
Now a path of length 3 leads to 1+1+1=3 (expected) infec-
tions. The chance that such a spread remains undetected is much
higher 0.93 =0.72.

Speaking loosely, many different networks can lead to the
same average reproduction number, but have very different
structures. If the distribution of reproduction numbers around
the network has no pockets in which they are too low—i.e., if
the growth structure of the disease around the network is well
“balanced” and not too low—then it is highly likely that any
early infection will be detected before it gets too far from the
first infected node. If, instead, the distribution of reproduction
numbers gives a nontrivial chance that the disease starts out on
a path with all low reproduction numbers, like the 1, 1, 1, path,
then there is a high chance that it can travel far from the seed
before being detected. This highlights the fact that a reproduc-
tion number R0 alone is a crude concept and that the specifics of
the network structure matter considerably for whether a disease
spreads or is containable. In particular, areas with low R0 (but
above one) can lead to more containment failures and lead to
broader infections. Given the short distances in many networks
(28–30), a lack of growth balance allows a disease to spread far
before detection. SI Appendix, Fig. S1 pictures a network that has
a high average reproduction number, but is not growth balanced
and allows the infection to travel far from the initially infected
node without detection.

In SI Appendix, Theorem 1 we prove that, with no delays in
detection and no leakage, a (k , x ) -regional policy halts infection
among all nodes beyond distance k +1 from i0 with probabil-
ity approaching 1 (as the population grows) if and only if the
sequence of networks satisfies growth balance with respect to k .
In fact, we prove a stronger version in which the quarantine dis-
tance k(n), average degree d(n), transmission probability p(n),
delay θ(n), and detection probability α(n) are all allowed to vary
with n .

Growth balance is satisfied by some, but not all, sequences
of prominent random graph models, provided that the aver-
age degrees d(n) satisfy d(n)k(n)→∞ (SI Appendix). However,
the additional heterogeneity in human contact networks makes
the property unlikely to hold in real networks even if average
connectivity is high. Indeed, if contact networks have some low
degree nodes (as they tend to empirically), then, unless quar-
antine regions are large (k(n) grows sufficiently as n grows),
growth balance fails and a regional quarantine will be ineffective
at halting a spread.

Next, we show that the effectiveness of a regional policy breaks
down, even if a network is growth balanced, once there is suffi-
cient delay in detection or leakage (due to imperfect information,
enforcement, or jurisdictional boundaries).

Delays in Detection and Wider Quarantines. To understand how
delays in detection affect a regional policy, consider two
extremes. If the delay is short relative to the infectious period,
the policymaker can still anticipate the disease and adjust by sim-
ply enlarging the area of the quarantine to include a buffer. An
easy extension of the above theorem is that a regional policy with
a buffer works if and only if the sequence of networks is growth
balanced and the delay in detection plus k +1 is shorter than
the diameter of the network (SI Appendix, Theorem 2). Given
that real-world networks have short average distances between
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nodes (31), this condition can be even harder to satisfy and non-
trivial delays in detection allow the disease to escape a regional
quarantine.

Leakage. Next, we consider how leakage—the inability to limit
interactions (13) or mistakes in identifying the portion of the net-
work and nodes to quarantine (17, 18)—diminishes the effective-
ness of regional policies. Although minimizing leakage increases
the chance that a regional quarantine will be successful, we
show that even a small amount of leakage leads to a nontriv-
ial probability that the disease will escape the quarantine. In
particular, we show that if even a small share ε> 0 of nodes
within distance k of the seed i0 ignore the quarantine and are
connected to nodes outside of the quarantine, then the pol-
icy will fail to halt the spread with a probability bounded away
from 0 as n grows (SI Appendix, Theorem 3, part 2). The result
also highlights a tension in containment strategies: The infection
is easier to detect when there are many nodes and interac-
tions within the potential quarantine radius; but there is also
more leakage and a higher chance that the infection escapes the
quarantine.

Jurisdictions and Leakage. We use the theory results as a starting
point to understand jurisdictional policies. It is important to note
that the results on leakage (SI Appendix, Theorem 3) apply when
interactions cross jurisdictions. To show this, Fig. 1 displays two
jurisdictions that fail to nicely tessellate the network: Geographic
location and network distance from the seed are not perfectly
aligned. Therefore, a quarantine in one region will necessarily
have leakage, missing nodes that interact across jurisdictions.
Given leakage across borders, unless policies are coordinated
across jurisdictions, our theoretical results indicate that they will
fail to contain infections, which is then the starting motivation of
the simulations.

Simulations. The theory shows that for most natural settings,
anything short of a global quarantine is unlikely to contain
the disease. Thus, it becomes important to understand how
well different policies do at curbing the number of infections
over time. In particular, we next study—via simulations—how
stylized versions of the containment policies that are used
in practice fare in terms of minimizing infections over time
and at what costs in terms of person days of quarantine (a
crude measure that accounts only for the total and not tem-
poral or geographic incidences, which might also be important
considerations).

To explore this, we simulate a contagion on a network of
140,000 nodes that mimics real-world data (20, 32–34). These

simulations illustrate our theoretical results and also show the
improvements that proactive policies provide relative to reac-
tive ones. SI Appendix, section 2E presents the robustness of the
results to some variations of parameters.

The network is divided into 40 locations, each with a pop-
ulation of 3,500. We generate the network using a geographic
stochastic block model. The probability of interacting declines
with distance. The average degree is 20.49 and nodes have
79.08% of their interactions within their own locations and
20.92% outside of their locations [calibrated to data from India
and the United States, including data collected during COVID-
19 (SI Appendix, section 2A) (20, 32–34)]. We fix this network
and use it for all simulations.

We conduct 10,000 simulations of each policy and then take
the average over the simulations, with each simulation using an
infection seed selected uniformly at random. The simulations
progress in four stages: First, any node that has been infected
for exactly τ periods is detected with probability α; next, policy-
makers use the information they have about detected infections
to decide whether to enact a quarantine (if one is not already
in place in their jurisdiction); third, the disease progresses and
currently infected people can infect their neighbors and people
who have been infected for θ periods recover; finally, quaran-
tines can end and new quarantines are implemented. We set
the rate that a node infects its neighbors to get a basic repro-
duction rate of R0 =3.5 (to mimic COVID-19) (35), and we set
θ=5, τ =3 (when used), and α=0.1 (SI Appendix, section 2B)
(19, 36, 37).

The simulated network is fairly symmetric in degree and there-
fore approximates satisfying growth balance. Thus, the attention
in our simulations is focused on leakage across jurisdictions and
detection delay.

Before introducing jurisdictions, we first illustrate the effects
of leakage as well as delays in detection on a regional policy. In
Fig. 2, the entire network is governed by a single policymaker
using a (k , x )= (3, 1) -regional quarantine. The policymaker
eventually knows the location of the infection seed, so that it
can properly center the quarantine, but does not detect the ini-
tial infection. This is meant to emulate the difficulties of finding
an initial infection in real time, but we give the policymaker
the advantage of being able to trace back to the epicenter and
center the quarantine once the policymaker decides to enact
a quarantine. As an addition to the policy, if the initial (k , x )
quarantine fails to contain the disease, the policymaker treats
detected infected people outside of quarantine as new seeds
and quarantines all nodes within distance k +1 of them. In SI
Appendix, we include simulations that relax the assumption that
the policymaker knows the location of the original seed i0, along

Distance 0 1 2 3 4

Jurisdiction a b

Distance 0 1 2 3 4

Jurisdiction a b

A B

Fig. 1. Nodes in two jurisdictions do not align with the distances from the initial infection. In A, the nodes are presented in a geographic sense, within their
jurisdictions, and the interaction network does not comply with the jurisdictional boundaries. In B, we show the network as a function of directed distance
from the initial infection. A coordinated quarantine of distance 2 over the network in B could contain the infection; however, if it is executed only by the
infected node’s jurisdiction in A, then it would fail for cross-jurisdictional connections.
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Fig. 2. We picture daily infections and cumulative recoveries under three scenarios. The entire network is governed by a single policymaker using a
(k, x) = (3, 1) -regional quarantine. In A, there is no detection delay and no leakage. In B, we introduce a detection delay of τ = 3. This represents the 3-d
presymptomatic window during which an infected node can transmit, as well as an expected delay in seeking healthcare and testing upon symptom onset
(SI Appendix, section 2B) (19). C adds leakage to the setup of B, by having a randomly selected fraction ε= 0.05 never quarantine. For each plot, we simulate
10,000 times on the same network with random initial infections and present the average number of infections and recovered people over time, scaled per
million.

with variants of the transmission and detection parameters—
varying θ, τ , α, and R0 (SI Appendix, sections 2D and 2E). In our
simulations, we primarily focus on x =1 and k =3 (other param-
eters appear in SI Appendix, section 2E). We use x =1 because,
as we discuss in SI Appendix, a policymaker attempting to min-
imize the number of infected person periods and quarantined
person periods should attempt to minimize the number of infec-
tions. We choose k =3 due to the limited size of our simulated
network—a larger boundary would cover too much of the overall
network.

Fig. 2A shows the outcomes for no delay in detection nor
any leakage. Consistent with SI Appendix, Theorem 1 the pol-
icy is effective: On average 277 people per million are infected
(0.028% of the population), with 803,956 person days of quaran-
tine per million people. Fig. 2B introduces a delay in detection.
With a delay of τ =3, infections increase, with 2,256 people
per million eventually infected (0.23% of the population) and
2,301,414 person days of quarantine per million people. Adding
a buffer to correspond to the detection delay effectively makes
the regional policy global, as the buffered region contains 99.98%
of the population on average. Fig. 2C adds leakage to the setup
of Fig. 2B, by having 5% of people never quarantine. The num-
ber of cumulative infections per million people increases to 5,138
(0.50% of the population). The leakage increases the number of
quarantined person days to 6,478,055 per million nodes.

Jurisdictional Policies. We now introduce jurisdictions to the same
network as before, and each of the 40 locations in the network
becomes its own jurisdiction.

We compare two types of jurisdictional policies. In reactive
policies, each jurisdiction decides on when it quarantines based
entirely on internal infections. If a jurisdiction has a threshold

of x cases, and observes at least x cases within the jurisdiction,
the jurisdiction goes into quarantine. In proactive policies, juris-
dictions track infections in other jurisdictions and predict their
own—possibly undetected—infections and base their quaran-
tines off of predicted infections. Intuitively, jurisdictions are con-
stantly estimating infection rates (including undetected cases)
in each jurisdiction based on the history of observed infections,
using knowledge of the interaction rates within and across bor-
ders and the infection and latency properties of the disease.
More specifically, at each time step t , the number of estimated
infections at time t is the sum of the estimated infections at
t − 1, plus the expected number of new estimated infections
minus the number of expected recoveries. The expected num-
ber of new infections is calculated using the connection rates
to nonquarantined jurisdictions (including own jurisdiction) and
the estimated infections in those jurisdictions at t − 1. If at any
point it is clear that the actual number of detected infections
in some jurisdiction is above the estimated rate, then the esti-
mation is updated. All jurisdictions begin by estimating that
there are no infections, until at least one infection is observed.
Details of this calculation are in SI Appendix, section 2D.
Proactive jurisdictions quarantine if they infer (or observe) at
least x cases.

We set x =1 for both the reactive and proactive simulations
unless otherwise specified. For both reactive and proactive juris-
dictions, when a jurisdiction enters quarantine, all connections to
and within the jurisdiction are severed for θ periods. As before,
we set R0 =3.5, θ=5, τ =3, and α=0.1. The policymaker does
not detect i0 for both the reactive and proactive policies, but does
know its location when setting the quarantine.

Fig. 3 illustrates the improvement that proactive jurisdic-
tional policies offer relative to reactive jurisdictional policies.
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Fig. 3. We picture daily infections and cumulative recoveries under four quarantine policies with 40 jurisdictions. When a jurisdiction quarantines, it locks
down the entire jurisdiction. In A, all jurisdictions use a reactive policy. In B, all jurisdictions use a proactive policy. In C, we implement the same policies as
in A, but have four lax jurisdictions that use x = 5 (0.14% of the jurisdiction population) instead of x = 1. D has 36 jurisdictions with proactive policies and 4
with lax policies. For each plot, we simulate 10,000 times on the same network with random initial infections and present the average number of infections
and recovered people over time, scaled per million.

In Fig. 3A, jurisdictions use reactive policies, while in Fig. 3B
jurisdictions use proactive policies. In the reactive case, there
are 298,911 infections per million people (28.89% of the pop-
ulation), with 131,303,638 person days of quarantine per million
nodes. Proactive quarantining dramatically improves outcomes
(Fig. 3B): Only 17,105 people per million are infected (1.71% of
the population), with 51,328,755 person days of quarantine per
million people.

Lax Jurisdictions. Finally, we also add four “lax” jurisdictions to
the setting. These are jurisdictions that are reactive and have a
high threshold of internal infections before quarantining, using
a threshold of x =5. We examine how these few lax jurisdic-
tions worsen the outcomes for all jurisdictions. Fig. 3C shows the
outcomes when the remaining 36 jurisdictions use reactive poli-
cies, while in Fig. 3D the remaining 36 jurisdictions use proactive
policies. Comparing Fig. 3 A–C, infections are worse under the
reactive policies. There are 340,587 people per million infected
(34.1% of the population), compared to 298,911 (29.9%) with-
out the lax jurisdictions. Comparing this change to Fig. 3 B
and D shows that things deteriorate relatively more for the
proactive jurisdictional policies. The 91,887 total infections per
million people (9.18% of the population) are a larger increase
from 17,105 (1.17%) without lax jurisdictions. Nonetheless, even
with lax jurisdictions, the proactive policies fare better than the
reactive policies (even if those do not have lax jurisdictions).

Fig. 4A displays the dynamics of quarantines for each of the
policy configurations from Fig. 3, and Fig. 4B displays the num-
ber of person days of infection versus the number of person days
of quarantine. Single jurisdiction policies (global quarantines
and (k , x ) regional quarantines [with ε=0.05 leakage]) do the
best on both dimensions. Once multiple jurisdictions are intro-

duced, proactive policies perform better than reactive ones for
both infected and quarantined person days. Even with lax juris-
dictions, the proactive policy is better than the reactive policy
without lax jurisdictions. For both proactive and reactive poli-
cies, introducing lax jurisdictions increases infected person days.
However, this effect is not uniform: With proactive jurisdic-
tions, lax jurisdictions cause a larger increase in infections (both
absolutely and proportionally). With respect to quarantined per-
son days, lax jurisdictions have different effects, depending on
other jurisdictions’ policies. With proactive jurisdictions, quar-
antined person days increase, while with reactive jurisdictions,
they slightly decrease. With reactive policies, infections spread so
rapidly from lax jurisdictions that by coincidence, large numbers
of jurisdictions quarantine at once—and eventually an almost
global quarantine occurs, halting the disease more quickly than
in the scenarios without lax jurisdictions, but with higher infec-
tions. This relative ordering of quarantined-person days for
reactive policies depends on parameters, as demonstrated in SI
Appendix: Increasing α causes the number of quarantined per-
son days to increase once lax jurisdictions are added to reactive
policies, rather than decrease (SI Appendix, section 2E).

Discussion
We have shown that regional quarantine policies are likely to
fail to halt the spread of a virus in most empirical settings, unless
there is extremely rapid and efficient detection of the disease and
governments can halt all contact within the quarantined region.
This failure is due to the failure of what we call growth balance,
which ensures that there are no infection paths leading from
infected individuals to others outside the quarantined region that
are likely to be undetected. Multiple governments using inde-
pendent policies are even less effective, as leakage occurs across
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Fig. 4. A displays the dynamics of quarantines for each of the policy configurations. B plots the number of person-day infections (per million) against the
number of person-day quarantines (per million) for six key policy scenarios. The global policy does the best on both dimensions, and the second best is the
single-jurisdiction reactive strategy (which does worse than the global one because of leakage). With 40 jurisdictions, both proactive policies outperform
the internal, reactive policies. By far the worst, on both dimensions, is the internal, reactive policy with some lax jurisdictions. These results come from the
same simulations that produce Figs. 2 and 3.

their borders. We have also shown that if governments are more
attentive to their neighbors, there can be substantial improve-
ments to their infection rates. However, the existence of some
lax jurisdictions imposes a significant cost on everyone else.

We view the (k , x ) quarantine model as a stylized approxima-
tion of some policymakers’ policies. These policymakers estimate
the disease’s location and try to shut down the surrounding area.
This can range from city blocks to subdistricts to larger regions,
depending on the country. For example, in multiple states across
India, such as Haryana, Karnataka, Andhra Pradesh, Gujarat,
and West Bengal (with a combined population of around 285 mil-
lion as of the 2011 Indian Census), district officials are entrusted
to define containment zones. This is decentralized and many
of their efforts are “microtargeted.” More globally, each dis-
trict plays the role of a jurisdiction in the multijurisdiction case.
Another example is a sports league where teams or collections
of players are contact traced and quarantined—parsimoniously
modeled as (k , x ) from i0.

Jurisdictional policies tend to be aimed at the welfare of
their internal populations, yet the external effects are large.
Our results underscore the importance of timely information
sharing and coordination in both the design and execution of
policies across jurisdictional boundaries (38). The results also
underscore the global importance of aiding poor jurisdictions.
Indeed, there is mounting evidence that a lack of coordi-
nation across boundaries has been damaging in the case of
COVID-19 (6).

The use of masks (decreasing p), social distancing (decreas-
ing d), and increasing testing (increasing α) and vaccinations
(decreasing p) all help attenuate contagion, but unless they main-
tain the reproduction number below one, the problems identified
here remain. Even tiny fractions of interactions across borders
are enough to lead to spreading in large populations. With
modern inter- and intranational trade and travel being a siz-
able portion of all economies, such interaction is difficult to
avoid. Nonetheless, our analysis also offers insights into manag-
ing infections at smaller scales, e.g., within schools, sports, and
businesses. By creating a network of interactions that is highly
modular, keeping cross-modular interactions to a minimum and
making sure that they are highly traceable, together with aggres-
sive testing (especially of cross-module actors), one can eliminate
leakage and effectively bound the set of interactions. This would

divide the network into small components of diameter less than
k , so that growth balance is satisfied by default.

We note that the effect of lax jurisdictions can be mitigated if
other jurisdictions eliminate contact with that jurisdiction, e.g.,
with travel restrictions. Then, for the nonlax jurisdictions, the
situation returns to one without any lax jurisdictions, which is
better as we have shown. This will work only if all nonlax juris-
dictions participate in a travel ban, as otherwise infection will
continue to resurge in jurisdictions that continue contact with
the lax jurisdictions, which then pass infection along to others.

Our results also suggest caution in using statistical models
to identify regions to quarantine. Although contagion models
are helpful for informing policy about the magnitude of an epi-
demic and broad dynamics, the models can give false comfort in
our ability to engage in highly targeted policies, whose results
can be influenced by small deviations from idealized assump-
tions (e.g., leakage). Our growth balance condition also points
out that not all parts of a network are equal in their poten-
tial for undetected transmission. Growth balance offers insight
into when containment will frequently fail. While full contain-
ment is sometimes, but not always, the full policy goal, it helps
us understand what features of the network aid or hinder con-
tainment efforts even under ideal conditions. Policymakers must
be conscious of limited paths of interactions that can introduce
the disease into a larger population, precisely because detec-
tion is very difficult along such paths. Therefore, such paths are
important to monitor. In places where the reproduction num-
ber is lower, the probability of observing outbreaks is also lower,
enabling a leakage of undetected infections.

Data Availability. There are no data underlying this work.
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