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Abstract. Network diffusion models are used to study disease transmission, information spread, technology
adoption, and other socio-economic processes. We show that estimates of these diffusions are highly
non-robust to mismeasurement. First, even when the network is measured perfectly, small and local
mismeasurement in the initial seed generates a large shift in the locations of the expected diffusion. Second, if
instead the initial seed is known, small and arbitrarily structured measurement error in links, with the share
of missed links close to zero, causes diffusion forecasts to be significant under-estimates. Such failures exist
even when the basic reproductive number is consistently estimable. We explore difficulties implementing
possible solutions, such as estimating the measurement error or implementing widespread detection efforts.
Finally, we conduct simulations on synthetic and real networks from three settings: travel data from the
COVID-19 pandemic, a mobile phone marketing campaign in rural India, and an insurance experiment in
China.

Researchers and policymakers studying the spread of ideas, technology, or disease often use network data
on how individuals interact to estimate models of diffusion. Examples include (i) quantifying the extent
of illness or technology take-up; (ii) summarizing diffusion dynamics (e.g., the reproduction number R0 of
a disease); (iii) targeting interventions (e.g., where to seed new information to maximize spread, where to
lockdown to prevent spread); (iv) and estimating counterfactuals (e.g., in estimates of peer effects, as we
show in an empirical example). See Anderson and May (1991), Jackson (2009), Jackson and Yariv (2011),
and Sadler (2023) and references within for all three classes of topics (as well as an account of how such
models are used in the case of strategic behavior).

We study when the econometrician has imperfect measurement of either the initial seeding or the interaction
network, and wants to estimate models of diffusion or generate diffusion forecasts. Importantly, we consider
cases where the measurement error (1) is very small, such that it vanishes in the limit of our asymptotic
case, and (2) only exists in either the initial seed or underlying network, giving perfect knowledge to the
econometrician about the network or seed, respectively. Nonetheless, we show that tiny mismeasurement
significantly affects the predictions of the econometrician’s estimated diffusion model.

We focus on an intermediate time horizon, such that the econometrician is not focused on predictions on
“day 2” of a diffusion, nor are they focused on “long-run” predictions. The short-term is highly stochastic,
while, in the long-run, the diffusion will completely saturate the network and forecasts and predictions of
where the diffusion goes are much less consequential for policy. Our preferred environment captures the
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setting where an econometrician is equipped with the richest possible data on individuals and interactions,
and wants to predict the diffusion process in the policy-relevant “medium-run.”

We show four key results: (i) predictions of where diffusion goes is sensitive to local uncertainty of the initial
seeding; (ii) predictions of diffusion counts will be under-estimated with even vanishingly small measurement
error of the network; (iii) while aggregated estimated quantities such as the basic reproductive numberR0 can
be estimated correctly despite the measurement error, it provides limited information for more disaggregated
targets; (iv) because the measurement error is so small, most data augmentation (either estimating the
measurement error or conducting additional data collection) will be ineffectual. These seemingly pessimistic
results, however, provide clarity on possible positive strategies to explore: the extremely high returns to
wide-spread strategies early in a diffusion.

To give intuition, consider a network formation process where connections occur with a higher probability
for people with some observable commonality (e.g., geography, school, work) or latent factors (e.g., Hoff
et al. (2002)). With a perfectly measured graph, when a diffusion process is seeded, we can draw a ball
around the (known) initial seed that will exhaustively enumerate the number of nodes possibly affected by
the process. This ball will expand over time, with the ball’s radius defined by the distance from the initial
seed. Even if the network is fully known, proximate initial seeds can effectively have the balls drawn around
them expand differently—there will be overlap between the expanding shells, but also non-trivial divergence.
So, small perturbations in the initial seed can lead to misleading conclusions on where the diffusion process
goes.

Now, in contrast, imagine the seed is known, but a small set of idiosyncratic links are missed and
unobserved. If any of these missed links reach further than the ball drawn around the seed in the observed
graph, the diffusion process will escape past the econometricians’ determined set of possibly impacted nodes.
Once the link is outside of the ball, it spreads even more quickly because it can diffuse to the largest possible
set of unexposed units. This jump need not be far – it simply needs to be a link that creates diffusion
unexpected by the econometrician.1 In our general theorems, each node can link to a (vanishing) fraction of
the population and the linking can be arbitrary in structure. This nests cases of only local mismeasurement:
e.g., only missing links to “nearby” locations.

Missing links in the measurement of networks is a common concern (Wang et al., 2012; Sojourner, 2013;
Chandrasekhar and Lewis, 2010; Advani and Malde, 2018; Griffith, 2022), but our paper highlights the
dramatic impact of even the smallest errors when forecasting diffusion. Mismeasurement can happen for
several reasons. The first is practical: many analyses using empirical data (including one of our own empirical
examples) do some amount of aggregation into groups with measured amounts of interaction. For example,
individuals may be binned into groups of location-by-age-by-occupation, and the interactions between these
groups are approximated based on underlying microdata. Using these data on individuals and interactions
to construct compartments and forecast diffusion processes implicitly assumes that connections occur with a
much higher probability for people with some observable commonality within the bin (Acemoglu et al., 2021;
Farboodi et al., 2021; Fajgelbaum et al., 2021). These choices may match the average interaction pattern,

1Our analysis is related to but distinct from Watts and Strogatz (1998). First and foremost, we do not require that the missed
links could go anywhere in the network. Our most general results allow for nodes to have mismeasurement to potentially only
a vanishing share of nodes in the graph. In our environment, the key condition of polynomial expansion is a joint property of
the graph and diffusion process and not a property of the graph alone. This distinct assumption allows for analytic analysis of
the diffusion processes, while also allowing for a much wider array of graph structures (including expansive networks). Further,
much of the work on small world graphs and diffusion focuses on phase transitions of the process (e.g. Newman and Watts
(1999)), but we compare shifts within the same (critical) phase. Finally, our focus is on forecasts of the extent and location of
the diffusion, sensitivities to perturbation of the initial seed, and possible solutions to the identified problems.
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but miss underlying heterogeneity, and may also mismeasure cross-compartment connections. Second, the
mismeasurement of the network may occur because the sampling process for the network is imperfect.
Studies surveying individuals may focus on local connections (e.g. within a school or village) and ignore
other connections. Or, it may be that certain connections are not mentioned, despite mattering to the
diffusion process. Third, it may be that a rich snapshot of a network does not capture the relevant links for
diffusion by the time the process reaches an individual.

Formally, we study an asymptotic model in which parameters depend on the number of agents to tractably
approximate finite-sample/time behavior, as is customary in graph theory. We consider a triangular array
where there is a discrete set of n agents who are in an undirected, unweighted network Gn. We take n→∞.
A SIR (susceptible-infected-recovered) diffusion process proceeds for Tn periods on Gn. In each period,
a newly infected node passes the disease i.i.d. with probability pn to each of its neighbors and is then
removed from the process. Since the model applies to diseases, technology adoption, social learning, and
other diffusion settings, we use the term activated to nest the application-specific terms such as “infected,”
“informed,” or “adopted” (Jackson and Yariv, 2007).

We consider a time regime where it is neither early nor late. In a model that studies diffusion, this is the
setting that is policy relevant. Early on, there is almost no information and nothing has happened. Similarly,
if we look far into the future, then the diffusion process will have saturated the network. To approximate
finite-time behavior, we impose that Tn is an increasing function of n. Our precise conditions embed an
upper bound on Tn, which ensures that the diffusion does not cover the entire graph, while a corresponding
lower bound ensures that we consider cases beyond an extremely local forecasting problem. The resulting
asymptotic framework applies to any Tn that falls within the given bounds, which are determined from
the structure of the model. This asymptotic framework is a convenient structure for considering diffusion
processes in the “medium-run.”

We define the true network over which the diffusion process spreads as Gn = Ln ∪ En. The subgraph
Ln is fully observed by the econometrician and is deterministic, while En is an unobserved stochastic error
graph2. Motivated by the empirical and statistical literature, we assume that the diffusion process on Ln

has a predominantly polynomial expansion structure in our main results, which generalizes a local meeting
topology (e.g., geography, social groups). The error graph En contains idiosyncratic links that, in our baseline
model, are drawn i.i.d. with probability βn among pairs of nodes. For each node, we allow it to link to a
fraction δn of nodes; when δn = 1, this corresponds to i.i.d. links between all pairs of nodes, but our results
allow for δn to vanish. Crucially, we assume that in the limit asymptotically all the links in the true network
Gn are observed: |En|/|Ln| →p 0. We assume an even stronger upper bound on the rate so that no giant
component can form in En: βn = o(1/n).

We proceed as follows. Sections 2 and 3 consider problems with forecasting. First, in Theorem 1, we
show that diffusion on Gn – even when the error network is completely known – is not stable with respect
to the location of the initial activation. Theorem 2 shows that when the initial activation is known, but the
error network is not known, the econometrician’s estimates of the diffusion count will be of lower order of
magnitude than the true counts in the intermediate run – the prediction will be dominated by the error.
Section 4.1 demonstrates we can consistently estimate both the activation rate pn and the basic reproductive

2We focus on the case of missing links, as we believe this issue will be the primary one in practice (see Griffith (2022) for several
empirical examples). In the case where the econometrician both misses some links and incorrectly assumes that others exist,
the problem becomes much more complex. Globally, the net rate of missing or added links appears to be the key factor; locally,
forecasts could over or underestimate the volume of diffusion
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number R0, despite the aforementioned problems with forecasting diffusion3. In Section 4.2, we consider
two possible solutions: (i) estimating the idiosyncratic links through supplementary data collection and (ii)
widespread node-level sampling (e.g., testing). In our assumed regime neither solution works. The sample
size required to estimate βn is unrealistically large, and the fraction of correctly identified locations with
positive tests will be strictly below one in the short run.

We then examine versions of our main theorems on simulated networks. In Monte Carlo exercises, we
generate networks that match known features of empirical data. We set the measurement error probability to
be small (βn ≈ 1/10n) and find that underestimates of the diffusion count range from 22% to 83% across the
simulations. We also demonstrate extreme sensitivity to initial conditions. When we perturb the initial seed
in a neighborhood comprising 1% (or 5%) of the graph, the expected overlap share of activated nodes over
perturbations is only 40% (or 13%) by the time the diffusion could potentially have saturated the network.

We then turn to analysis on real-world networks. In our first example, we construct a mobility network
from the Southwest of the United States and examine mismeasurement due to “pruning” – where links
between locations are only included if a sufficient number of people move between them. We find that
changing the threshold from five to six people traveling between Census tracts causes the policymaker to
underestimate the extent of diffusion by 56%. In addition to pruning, we induce errors by removing i.i.d.
random links and find more extreme underestimation by more than 76%. As a second example, we show
that similar patterns hold in a viral marketing experiment in rural India (Banerjee et al., 2019). We also
document extreme sensitive dependence on the seed set: when we move only one single seed to one of its
neighbors, the intersection is only 61% of the activations encompassed by both diffusions. Finally, we show
how our results relate to the estimation of peer effects, focusing on the up-take of insurance in China (Cai
et al., 2015).

1. Model

Environment. For a given set of observed nodes Vn with the number of nodes n, we model the network
through a random undirected and unweighted graph Gn := (Vn, Ln ∪ En) where Ln consists of the “base”
links and En collects the missing links. Generally, we assume that Ln is fixed and known perfectly, and
all the links in Ln are true links. Each link in En is constructed independently following Ber(βij,n) where
these can be heterogeneous at the pair level. The links in En are random and not observed, and hence the
randomness of the true graph Gn only comes from the random realizations of En. Particularly, in our model
we only consider the mismeasurement caused by missingness and there are no falsely added links. With an
abuse of notation, we use Ln and En to denote the undirected and unweighted graphs with the base links
and the missing links.

The diffusion process spreads over the network Gn following a standard Susceptible-Infected-Removed
(SIR) process with i.i.d. passing probability pn. Each node is activated for a single period and has
the opportunity to transmit the process with i.i.d. probability pn to each of its neighbors. After nodes
are activated for a single period, they are removed and cannot be re-activated. To better represent the
randomness in the diffusion process, we define Pn(Gn) as a random percolation on the graph Gn, which is a
directed, binary graph with each directed link based on Gn activated i.i.d. with probability pn. The diffusion
process is equivalent to a deterministic process emanating from some initial seed through Pn(Gn), and hence

3Alimohammadi et al. (2023) makes a similar point. They study a SIR model on a network and design an estimation strategy
for the parameters and the trajectory of epidemics. They consider a local estimation algorithm based on sampled network data,
and show that asymptotically they identify the correct proportions of nodes that will eventually be in the SIR compartments.
These results are analogous to our finding that one can estimate pn and R0 in a straightforward manner.
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the randomness in the diffusion process is captured by the random realization of Pn(Gn). Similarly, we let
Pn(Ln) as the percolation on the graph Ln given by restricting Pn(Gn) with the edges in Ln.

We conduct asymptotic analysis, taking limits as both T , the number of time periods, and n, the number
of nodes, become large. We consider a sequence of graphs {Gn} = {Ln, En}, where En are drawn randomly,
that grows with n, and consider T := T (n) where T is an increasing function in n. More details on exactly
how T grows are discussed below. We generally suppress the dependence of T on n for simplicity.

Let Bj(t) denote the ball of radius t around vertex j in a given graph and let {Xn}n = (X1, . . . , Xn, . . .)

denote the sequence of random variables. We define the expected activation for a diffusion on Ln set as

Et = E |{x ∈ Vn | x ever activated by the diffusion on Ln}| .

To set up our first results, we impose the following condition on the diffusion process.

Assumption 1. For some constant q > 1 and all discrete time t, Et = Θ(tq+1) and St = Et−Et−1 = Θ(tq).4

Furthermore, pn ∈
(

(log n)
−q/(2q+2)

, 1
]
. 5

We write this assumption over the diffusion process rather than on the graph structure of Ln to allow
for more generality. We could have simply assumed that Ln itself has polynomial expansion, and, together
with the appropriate pn and i.i.d. draw assumptions, Assumption 1 follows. But, we allow for more general
settings. For example, Assumption 1 covers cases of Ln with non-polynomial expansion and i.i.d. draws
of pn, but with a sub-critical passing probability or short time horizons. The lower bound on pn is to
ensure that the diffusion process spreads with sufficient speed – otherwise, the diffusion may halt before
the medium time horizon that we study. We note three elements of substance on the assumption. First,
it implies that as the diffusion progresses, a growing number of nodes become activated in expectation.6

Second, this condition governs both the structure of the graph and the diffusion process. As an example,
consider a latent space network where nodes form links locally in a Euclidean space (Hoff et al., 2002). Since
volumes in Euclidean space expand at a polynomial rate, this ensures that Assumption 1 will be satisfied.7

Third, note the geometric relationship between Et and St — Et governs the total volumetric expansion of
the diffusion, while St governs the shells of the diffusion (e.g., the boundary at time t). We explore the case
where Et has exponential growth for completeness in Section 5.

We then put specific constraints on the time horizon considered. The first condition restricts the time
so that the diffusion has not reached the edge of the graph.8 The second condition ensures we are making
a forecast about a time period appreciably far in the future. Let a be any positive constant satisfying
2a > 1/(q + 1); smaller a are permitted for more expansive (larger q) graphs.

Assumption 2. Tn has for each n, Tn ∈ [Tn, Tn] where the following holds: (1) Tn = n
1
q+1 and (2)

Tn = (log n)a.

Note that our main results hold for any Tn ∈ [Tn, Tn]. To get a sense of scale, consider California with a
population of 39 million and assume the parameters are set at the day-level. If a geographic-type network

4an ∈ Θ(bn) means an is bounded both above and below by bn asymptotically in Bachmann-Landau notation.
5We assume pn is not changing with time in this case and generalize that in Appendix F.
6The basic reproductive number on Ln must be greater than one.
7As another example, consider the case where the latent space is equipped with hyperbolic, rather than Euclidean, geometry
(Lubold et al., 2023). While volumes in the space expand at an exponential rate, Assumption 1 may still be satisfied for some
T and pn. In the case of sufficiently small pn, this situation corresponds to the case when the diffusion simply spreads slowly
because it has a low passing probability. In the case of sufficiently small T , this situation corresponds to the diffusion not having
enough time to reach a large portion of the graph.
8Formally, this assumption makes sure that the diffusion does not reach the edge of particular subgraphs. Our proof strategy
relies on the construction of independent subgraphs to simplify computations, so we adjust the upper bound on T to compensate.
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(q = 2) is a good model of expansion, this has an upper bound of 11 months and or with a slightly more
expansive model (q = 3), then the upper bound is 3 months. The lower bound is close to one month in either
case.

We set up a general structure on the distribution of En. A given node i can link to fraction δn of the graph
through En. The share δn controls the support of potential links in En and will do so in an unrestricted
way. The maximum value of δn is clearly 1, unchanging with n. In this case, both “long range” and “short
range” (from the perspective of Ln) links are permitted. But a smaller δn can disallow long range links
– it may be that the entire δn share of nodes are in a highly localized neighborhood of i. It is useful to
provide some notation to provide a lower bound on δn. We use the same constant a as in Assumption 2,
with 2a > 1/(q + 1). Let ν := a − 1/(2q + 2) be the difference. The lower bound on the share of nodes
that can be linked to is given by δn = (log n)−qν . Considering California again, if it were a geographic-type
network (q = 2) or even a more expansive one (q = 3), it is easy to see that rates such as δn < 0.001 becomes
permissible (as do even smaller rates). And given the unrestricted nature, this allows for topologies such as
only very rare and local-in-L links to be formed.

Assumption 3. For every n, i, j, Eij ∼ Ber(βn) for up to some share δn of the n nodes and is zero
otherwise. Further,

(1) δn ∈ (δn, 1]

(2) βn ∈
(

1
pnT qδnn

, 1
n

)
.

We can examine βn, fixing a given value of δn. First, note that both the upper and lower bounds for βn go
to zero as n grows large. Second, Assumptions 1 and 2 ensure that pnδnT q ∈ (1, n). This restriction ensures
that there are links in En, with probability one, as n → ∞. Third, the upper bound on βn imposes that
En is sparse: with probability one, En is not a connected graph, nor will it contain a giant component as
n→∞. Given these restrictions, the large forecasting errors we characterized below are not a function of a
dense set of links unobserved by the econometrician. Instead, they are caused by a small (and disconnected)
set of idiosyncratic links that can have an unstructured pattern. While the forecast errors would also clearly
happen if the econometrician missed a dense graph or a giant component, we focus on a regime where the
mismeasurement is sparse, making the results more surprising.
Econometrician’s Goals. We study two policy objectives for the econometrician: identify where the diffusion
goes and how much diffusion there is by time T .

To do so, the econometrician wants to estimate which individuals have been activated by time T for a
diffusion process that starts at node i0 with percolation Pn(Gn). Let yjt be an indicator which denotes if
node j has ever been activated through time t. We will generally suppress the dependence of this on Gn,
Pn(Gn), and i0. The ever-activated set as of period T can be written as

IPn(Gn)(i0, T ) := {j ∈ Vn s.t. yjT = 1|Gn, Pn(Gn), i0}.

We then consider functions of this set. We will generally assume that the econometrician is not an oracle:
while they may have a (potentially large) amount of information, the realization of Pn is not known.
Therefore, we will study the distribution (or moments thereof) induced by the random Pn. As we discuss
each objective function, we will make clear what is known to the econometrician. Throughout, we will
assume T , q and Ln are known perfectly. These are heroic assumptions that only benefit the econometrician.
Therefore, our results can be thought of as modelling policy objectives in a best-case scenario.
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2. Sensitive Dependence on the Seed Set

We first show how the diffusion process is sensitive to weakening the assumption that the policymaker
has perfect knowledge of i0, the initial seed. We consider a local perturbation of the initial activation of
the diffusion and show a structural lack of robustness of the model caused this initial seed mismeasurement:
even if seeds differ only slightly, this is enough to generate very different diffusion patterns. The setup of
the result is motivated by a policy-relevant consideration. Given slightly incorrect assessment of the seed
(e.g., patient zero), even with knowledge of the true network Gn, the policymaker is likely to predict large
differences in both where the diffusion jumps and who is activated.

To fix notation, we first define a percolation, Pn, for the diffusion process and vary only the initial seed
between i0 and some nearby j0. This removes the randomness from the diffusion and holds fixed the set
of possible paths that it can take as we vary the initial seed. Hence, we can study the resulting activated
sets, given percolation P := Pn(Gn), when seeding with some i0 versus some j0. Recall that IP (i0, T )

and IP (j0, T ) denote the ever-activated sets by period T for the two seeds respectively, holding fixed the
counterfactual passing process across each link.

We next define a catchment region. For some node e that is activated at time T , if the diffusion process
continues for t more periods, then the catchment area is defined as the maximal set of nodes that can be
activated beginning with e, Be(t), which is the ball centered at e with radius t relative to the true graph
Gn. In what follows, we will find that, given the extreme sparsity of En, for any two nodes e1 and e2 which
have edges in En (i.e., there exists alters e′1, e′2 that e1e

′
1, e2e

′
2 ∈ En), the catchment areas (over t periods

of transmission) typically will not intersect: Be′1(t) ∩Be′2(t) = ∅ with probability tending to one. We call e′1
an alter of e1 in En as it is linked to e1 in En. Intuitively, the catchment areas of these alters in En, e′1 and
e′2, can be thought of as analogous to geographically distinct areas (though the network is not constrained
to geographic structure). Each region has potential size Et in expectation, and is bounded above in size by
the total number of nodes in a t radius ball around the seed, where t is the number of periods post-seeding.

We define a sequence of local neighborhoods relative to a diffusion process. Let Un,i0 = Bi0(an) be a ball
of radius an around the reference node, possibly growing, with an/Tn → 0. Relative to the total expansion
of the diffusion process over T periods, the local neighborhood about i0 we consider is vanishing.

We make use of the fact that, relative to seed i0, there are two nodes, e1 and e2, which are the closest and
second-closest nodes to i0 that have a link to some respective alters in En. In what follows, we condition
on the sequence of events Γ′n := {[PTn ]j0e2 > 0}: there exists at least one path between j0 and e2 in the
percolated graph. The construct helps us rule out pathologies and instead focus on cases where escapes are
possible. In general, percolation problems with changes on linkages (e.g., bond percolation) are extremely
complicated and not our focus (see, e.g., Smirnov and Werner (2001); Borgs et al. (2006)). So, we consider
sequences under general conditions of interest here.9

We use a version of the Jaccard index (Jaccard, 1901) to compare the expected set of nodes that are ever
activated by both the diffusion processes starting at i0 and starting at j0 relative to the number of nodes that
are activated by either initial node process. We call this discrepancy measure ∆n(i0, j0)— the relative number
of nodes that were ever activated by only one of the diffusions to the number activated by both. It is useful
to also condition on the event that i0 and j0 are connected in the percolation, because otherwise the problem
is uninteresting since the diffusions never overlap. So, we assert Γn := {|IP (i0, T )∩ IP (j0, T )| > 0} ∩Γ′n and

9To see an example, with infill asymptotics, one can construct sequences where Γn occurs with probability tending to zero just
by virtue of adding more independent paths in Ln at a sufficiently high rate relative to pn.
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define our index as
∆n(i0, j0) :=

{
|(IP (i0, T ) ∩ IP (j0, T ))|
|IP (i0, T ) ∪ IP (j0, T )|

∣∣∣∣ Γn

}
,

Note that Γn eliminates events where the Jaccard index mechanically takes a value of zero, which makes the
result that this object will be strictly less than one stronger. If ∆n(i0, j0) is small for a nearby pair i0 and
j0, then, on average with a fixed percolation, a large set of nodes is activated through the process by only
one diffusion process, and not the other.

Theorem 1. Let Assumptions 1, 2, and 3 hold. Let i0 be an arbitrary initial seed and consider the stochastic
sequence {Gn}n comprised of a fixed sequence of {Ln}n and random {En}n. Let Un,i0 = Bi0(an) be a ball on
Gn of radius an around i0 with an/Tn → 0. Then with probability approaching one over draws of (En, Pn),
we have the following. There exists a sequence of time periods {Tn}n, local neighborhoods {Un,i0}n, and a
sequence of shift node sets {Jn,i0} with Jn,i0 ⊂ Un,i0 for each n with |Jn,i0 |/|Un,i0 | > C for some positive
fraction C independent of n. Furthermore, for all j0 ∈ Ji0 :

(1) The number of catchment regions disjoint from Bi0(T )∪Bj0(T ) activated under seeding with j0 ∈ Ji0
rather than i0 is order

nβnδnpns
q
n > 1,

for growing sn, and may be order constant or even diverge in n.
(2) We have

∆n(i0, j0) ≤ c < 1

for some fraction c independent of n.

All proofs are in Appendix A unless otherwise noted.
This result shows that for a non-trivial share of nodes near to i0, if the seed were counterfactually shifted,

we get a disjoint set of locations activated and the overall overlap is potentially low. The key idea is that
when considering a diffusion pattern starting at a nearby j0, we must consider whether the percolation
would activate a significantly different portion of the network than the one beginning with i0, by finding a
“shortcut” to a very different part of the network. We show that there will always exist some j0 and time
period for which this is true. The intuition comes from fixing the second closest “shortcut” link in En to
i0: before a diffusion pattern from i0 can reach this shortcut, the diffusion from j0 will reach this shortcut.
This will induce two effects. First, a non-trivial share of activations will be different due to variation in
seed. Figure 1 shows a heuristic construction of the set Ji0 . Second, there will be jumps in the number of
distinct catchment regions activated in the network. The portion of the proof that tracks the number of
catchment areas relies on a separate lemma that computes a bound on the expected number of catchment
areas activated. Given this lemma will play a role in a number of results, we state it as an independent
result.

Lemma 1. Let Assumptions 1, 2, and 3 hold. Let Xs be the number of catchment regions activated in time
step s. Then, the following holds:

EPn(Gn),En [Xsn ] ≥ nβnδnpnsq

The intuition is that the number of new catchment regions activated at each time step will be closely
related to how many nodes are in the shell of diffusion on Ln. Note that expectations are taken over both
the diffusion process Pn(Gn) and realizations of En. With an application of Hoeffding’s inequality, Lemma
1 yields the first part of Theorem 1.
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Stepping back, we can also note that despite j0 being close to i0, in the sense that their network distance
is small relative to the length of the diffusion, and these problems still occur. Further, these alternative seeds
are not isolated: the first part of the theorem shows that a non-trivial fraction of the location neighborhood
about i0 contains such problematic alternative seeds. Our simulations quantify examples to show how
extreme the problem can be realistic setups.

i0

an

e1

T

e2

T
bn

Ji0

Un

Figure 1. A heuristic construction of Ji0 using R2 to represent Ln. Let e1 and e2 be the
closest and second closest nodes in Ln that also have a link in En. The smaller red dotted
circle denotes Un,i0 := Bi0(bn), while the larger denotes Be2(an). The intersection gives the
set Ji0 .

3. Sensitivity to Mismeasurement in the Network

We now show how tiny measurement error in the network connections leads to large forecasting errors in
the diffusion process. We show how using the observed network Ln to make forecasts with a known seed can
greatly underestimate the average extent of diffusion on the true network Gn.

We assume i0 and Ln are known perfectly. The error we study is one in which the econometrician uses
the observed Ln as a stand-in (mistakenly assuming En ≡ 0),

ŶT (Ln) := EPn(Ln)

 n∑
j=1

yjT

∣∣∣∣ Ln, i0


where the expectation is taken with respect to the diffusion process Pn(Ln) on Ln. We focus on this specific
estimator for several reasons. First, it captures what is often done in practice both out of convenience and
feasibility. Surveys about interaction and contact tracing face survey fatigue and/or top-coding in data
collection. Mobility data routinely use thresholdings to define connections. They also leave out interactions
that are not traceable through phones: e.g., in the developing world where households may have a single
phone, movements of all members without a phone are simply dropped. In information diffusion, studies
about social learning on social media may leave out person-to-person interaction, SMS off the platform, and
so on. Unless one models the entire span of such missed interaction, the econometrician is really in the
situation described here: effectively dropping En. Second, a consequence of some of the results below is that
recovering the distribution of En to integrate over it may be practically impossible. Even in the simple case
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of a homogenous βij,n = βn for every i, j, the imposed rates on βn make it difficult to identify enough links
in En to precisely estimate βn.

Nonetheless, a reasonable if not forgiving benchmark for ŶT (Ln) is setting the target as integrating over
En rather than treating it as known.

ŶT (Gn) := EEn,Pn(Gn)

 n∑
j=1

yjT

∣∣∣∣ Ln, i0


where the expectation is taken with respect to Pn(Gn) and realizations of En, with known i0 and Ln. If we
compare the econometrician who ignores En entirely to one who uses En to the full extent, they will surely
do worse.10 Comparing to the case where the econometrician knows the distribution of En and integrates
over it is a more fair comparison. It also demonstrates the value of understanding the error distribution
(even if it may be difficult to asses in practice).

We give the econometrician perfect knowledge of not only Ln, but i0 as well. And, as before, the
econometrician has perfect knowledge of T and q. Despite these advantages, the econometrician’s forecast
error will swamp the forecast as n→∞.

Theorem 2. Under Assumptions 1, 2, and 3, as n→∞, ŶT (Ln)

ŶT (Gn)
→ 0.

We briefly give some intuition of why the forecast error dominates the predicted error in magnitude. We
count the number of catchment regions activated at each time step activated through En. While the initial
missed jump to other locations in the network does not generate forecasting issues of any consequence, the
issue is that these jumps recursively explode. For each catchment region activated, it may in turn activate
additional catchment regions, and so on. In totality, these new shells caused by the propagating error dwarf
the diffusion captured by the observed graph Ln.

The proof strategy formalizes this intuition. We first compute a lower bound on the number of expected
new catchment regions activated in each time period with Lemma 1. To generate a lower bound on expected
activations, we introduce a tiling of the graph and count how many tiles are activated in expectation. We
then calculate this number and scale by the number of nodes activated in each tile.

In Appendix F, we show a similar version of Theorem 2 that allows the diffusion process to slow over time
with a decays at a polynomial rate: the resulting structure is equivalent to considering a diffusion process
with a lower q. Doing so requires slightly different assumptions: we require an earlier time window and a
higher rate of missing links. The intuition is that we need additional missing links to “compensate” for the
slowing diffusion process to get the same result.

4. Estimation and Possible Solutions

We now consider several estimation procedures in our setting. First, we consider how the econometrician
can estimate the underlying structural parameters like pn successfully, despite our pathological results above.
Second, we show that what seems like a natural solution to our forecasting results, estimating βn, our error
rate, and adjusting for it, is almost impossible in reasonable samples because the error rate is so small.
Third, we consider a widespread testing regime and show that the detected number of regions that have
activated nodes will underestimate the true number of activated regions.

10Furthermore, computing the expectation treating En is known to be NP-Complete (Shapiro and Delgado-Eckert, 2012).
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4.1. Estimating Parameters of the Process. We now show that despite the aforementioned pathologies,
some core parameters of the process can be consistently estimated. We assume that the econometrician has
perfect detection in that they see all true activations. Using knowledge of the observed Ln and yj,t−1,
the econometrician can derive the exact number of expected activations for a given value of pn and hence
consistently estimate p̂ using the observed yit.11 It then follows that the econometrician will be able to
consistently estimate R0, the basic reproduction number 12 as R̂0 = p̂dL where dL is the (observed) mean
degree of Ln, whereas in actuality it is R0(Gn) = pndL + βnnpn.

Remark 1. Assume that the policymaker has a consistent estimator p̂ of pn and knows dL, that R0 is
constant, and Assumptions 1, 2, and 3 hold. Consider the estimator R̂0 = p̂dL. Then, we have R̂0

R0(Gn) →p 1.

Proof. Note that R0(Gn) = dLpn + βnδnnpn = dLpn

(
1 + βnδnn

dL

)
= R0(Ln)(1 + o(1)), where the final

equality follows by assumption. R̂0 is a consistent estimator of R0(Ln), as dL can be computed directly and
the econometrician has access to a consistent estimator of pn. An application of the continuous mapping
theorem completes the result. �

While the econometrician can consistently estimate R0 they will still be unable to accurately forecast the
location or volume of diffusion as shown in Theorems 1 and 2.

We give an example of one way that an econometrician could estimate pn consistently. Let I(i, t) be the
set of neighbors of i activated at period t. Then at time T , a consistent (though inefficient) estimator of pn
will be

p̂ :=

T∑
t=1

n∑
i=1

yit1{yit−1 = 0, |I(i, t− 1)| = 1}/
T∑
t=1

n∑
i=1

1{yit−1 = 0, |I(i, t− 1)| = 1}.

Note that by restricting attention to susceptible nodes with exactly one activated neighbor, activations occur
independently with probability pn, and hence p̂/pn →p 1. Note that this estimator uses perfect knowledge
of Ln via the sets I(i, t).

4.2. Possible Solutions. We explore two possible solutions that a policymaker might pursue. First, they
might estimate βn, the connection rate for the En graph, using supplementary measurements. Second, they
might use widespread testing.
Estimating βn. Given the previous results, an approach for the econometrician might be to estimate βn, and
use the estimate in order to inform forecasts. Assume the econometrician already has Ln, but is able to
obtain follow-up data by sampling mn nodes uniformly at random out of n, and ask whether or not each ij
link exists in Gn. In this way, they can potentially find links in En to supplement the information from the
known Ln. Note that a sample of size mn nodes will deliver

(
mn
2

)
possible links.

We show that, in practical settings, this strategy will not be feasible. Specifically, our above theorems
have demonstrated forecasting difficulties under extremely small levels of measurement error, and such a
small βn poses challenges for estimation. Throughout, we assume that δn = 1. We view this as a best-case
scenario for the policymaker, in the sense where it makes it as easy as possible to find missing links. In fact,
there are two regimes. First, with a large growing sample, the probability that one does not find a single En
link tends to one, even though the rate of βn is high enough to cause all the problems previously discussed.
Second, one may find some missed links with a (potentially unrealistically) larger sample, but one will not
be able to develop a consistent estimator.

11We do not solve a general formulation, as solving the generic problem is known to be NP-Hard (Shapiro and Delgado-Eckert,
2012). Rather, we show an (inefficient) estimator.
12The number of nodes, in expectation, activated by the first seed in an activation-free equilibrium.
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Proposition 1. Under Assumption 3 with δn = 1, if:

(1) mn = o(
√
n), P

(
No links amongst

(
mn
2

)
found

)
→ 1.

(2) mn = O(1/
√
βn), there exists ε > 0 and c ∈ (0, 1) such that P(|β̂n/βn − 1| < ε) < c.

To give a sense of scale, say that n is one million. Consider a case where βn = 1
n(logn)2 (which

is valid for T = log n and q = 2, which are allowable parameters under Assumption 2). Then, with
constant pn, having mn = o (log(n)×

√
n) samples would still deliver nearly no information, even when

this corresponds to a (perfect) survey of more than 13,800 people out of n equal to a million. For another
example, if βn = logn

npnnq/(1+q)
(which is admissible under Assumption 2), then with constant pn, under any

mn = O
(
n×

√
1

n1/(1+q) logn

)
, an estimator for β̂ is not consistent, even if there is information gained in the

survey. To illustrate numerically, with the population at one million and q = 4, a perfect survey of nearly
68,000 people would still generate an inconsistent estimator. In practice, surveys of 15,000 people, let alone
68,000 people in a city, are uncommon. It is unlikely that this is an obstacle that can feasibly be overcome
in most policy settings.
Widespread Testing. Another potential solution is the use of widespread testing. Say that a policymaker
wishes to estimate where in society activated agents reside at a given time period, in order to track regions
with a disease or locations susceptible to problematic rumors or where certain technologies have been
adopted. We show that the number of true regions that are activated at some time period will be grossly
underestimated.

Specifically, we assume that the policymaker conducts random tests instantaneously and uniformly throughout
the entire society of n nodes and detects the activations with i.i.d. probability αn. Under this widespread
testing regime, we can calculate the probability that a region is correctly identified as having been seeded
by period T with the diffusion process.

Theorem 3. Let Assumptions 1, 2, and 3 hold. Consider a test with detection probability αn → 0 with n,
such that T < (1/αn)1/(q+1). Let K?

T be the expected number of regions with an activated agent at time step
T and let K̂T be the expected number of regions with an observed activated agent at time step T . Assume
each activated individual is observed i.i.d. with probability αn. Then as n→∞,

K̂T

K?
T

≤ αnT q+1 < 1.

This result demonstrates that in the short run, widespread testing will be bounded away from full
effectiveness. The result holds because many regions will have few activations, making it harder to accurately
detect them, but they will comprise a non-trivial fraction of activated regions. In practice, wide testing can
become infeasible with large population. Even with an accurate test, there may not be enough tests for the
full population, or it may be hard to make testing compulsory.

5. Extension to the Exponential Case

We turn to the case of exponential expansion, included for completeness. If there were exponential
expansion, diffusion would happen so quickly that, from a policy perspective, forecasting would become
moot and sensitive dependence unnecessary as the process would spread through the graph immediately.
Nonetheless, we explore the implications of small mismeasurement even in this case. We make assumptions
that correspond to Assumption 2 and 3, to account for the faster-moving diffusion process. As before, we
assume that each node i can link to a fraction of nodes δn of the graph through En.
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Assumption 4. For some constant q > 1 and all t, Et = Θ(qt) and St = Et − Et−1 = Θ(qt). In addition,
we assume that pnδn > 1

logn .

Assumption 5. For every n, Tn ∈ [Tn, Tn] where: (1) Tn = log(n) and (2) Tn = log(log(n)).

Assumption 6. For every n, i, j, Eij ∼ Ber(βn) for up to some share δn of nodes and is zero otherwise.
Further:

βn = Ω

(
1

pnδnn

)
We then note the differences in the bounds on Tn: we impose a smaller lower bound and a larger upper

bound than for the polynomial diffusion process. The smaller lower bound on Tn is intuitive: because the
diffusion spreads more quickly, the seeds from idiosyncratic links can cause the diffusion to explode much
more quickly.

Theorem 4. Under Assumptions 4, 6 and 5, as n→∞, ŶT (Ln)

ŶT (Gn)
→ 0.

We make a few comparisons to our previous result. Relative to Theorem 2, we impose a stronger lower
bound on βn – in order for similar results to hold, we require a larger probability of idiosyncratic links.
This change follows from the structure of the proof – the key comparison is the expansion in all of the areas
“seeded" via the idiosyncratic links compared to the expansion of the original diffusion process. When the
original diffusion process is faster moving, it means that more idiosyncratic links are needed to overwhelm
the original diffusion.

Second, we note that if pnδn < 1, then the condition on βn implies that as n→∞, En will contain a giant
component almost surely. This condition will hold generically, in contrast to the case where the diffusion
follows a polynomial process, which generally does not need En to contain a giant component asymptotically.
While the fraction of links missed by the policymaker still goes to zero, the policymaker still misses a large
amount of structure relative to the polynomial case.
Partial Converse. With additional structure on Ln we prove a partial converse to Theorem 4.

Proposition 2. Assume that Ln is made up of Kn independent regions, which each fulfill Assumption 4.
Furthermore, assume that Assumption 5 holds. Then if βn = O

(
1

pnδnn

)
, we have that ŶT (Ln)

ŶT (Gn)
→ 1.

This result is positive for the econometrician – they correctly identify a fraction of activated nodes that
asymptotically goes to 1. This follows from the fact that the initial activation creates so many activations
relative to the additional “seeded” activations through En. Note that here, En does not contain a giant
component asymptotically. Combined with Theorem 4, this tells us that for a more expansive diffusion, the
forecasts made by the policymaker will not be “accurate” if and only if En contains a giant component. The
giant component within En will have a tree-like structure meaning that the policymaker is missing a highly
expansive structure. Perfect local forecasting plays a positive role – it is what allows the policymaker to be
arbitrarily accurate. But given the nature of the network structure itself, a very large share of the population
becomes activated very quickly.

6. Simulations

We present a number of simulations to illustrate our results in finite samples and explore how variation in
parameters affects things quantitatively. We simulate a Susceptible-Infected-Removed process on a network
with one period of activation before removal, analogous to the processes that we study theoretically. We
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give an overview of each part of the simulations in the relevant subsections, with full details in the Online
Appendix B.

Throughout, we fix Ln, the graph observed by the policymaker and design it to mimic the sparsity and
clustering structure in real data. We first generate Ln by placing nodes in a q-dimensional lattice on [0, 1]q.
The remainder of nodes are placed uniformly at random throughout [0, 1]q. Nodes then link to nearby nodes,
with a radius of connection chosen to ensure both that the lattice is connected and that all randomly placed
nodes will be connected to the graph. As an illustrative example, we simulate two different networks with
n = 4, 000 nodes: one with q = 4 and one with q = 2. For the SIR process on the graph, we set R0 = 2.5,
and then compute pn by dividing R0 by the mean degree in Ln. Summary statistics are shown for both
graphs (along with average summary statistics for the corresponding Gn) in Appendix B.1.

We choose simulation time length T to be twice the diameter of Ln – meaning that for q = 4, it is chosen
to be 38, while for q = 2 it is chosen to be 184. This value is chosen to cover both periods early on in
the diffusion process, and as well as past the time period covered by our asymptotic theory.13 Since the
asymptotic theory we consider cannot speak to long-run, we simulate to the point when the diffusion extends
well past the diameter of the graph, at which point we would expect the diffusion to conclude.
Sensitive Dependence. First, we investigate Theorem 1 in simulation by looking at perturbations of an initial
seed within local balls covering 1% to 5% of the overall number of nodes. We fix Ln and a particular instance
of En to form Gn, and set i0 as the center of the lattice. Then, we construct Ji0 , the set of possible alternate
seeds, and choose a j0 ∈ Ji0 uniformly at random. To construct Ji0 , we first find the depth of the second
closest links in En to i0 – call this distance de2 . Then, nodes are included in Ji0 if they are at distance
de2 + 1 from i0. Empirically, for q = 4, de2 = 2 meaning that the distance from i0 to j0 is 3. The local
neighborhood around i0, Ui0 (which contains all nodes at or within distance de2 + 1) of this size makes up
5.3% of the total nodes in the graph, while Ji0 makes up 64.6% of the local neighborhood. For q = 2, the
distance from i0 to j0 is 4, while the local neighborhood of this size makes up 1.05% of the graph and the
set of j0 make up 31.0% of the local neighborhood.

To approximate ∆n(i0, j0), we fix the underlying percolation and examine the set of ever-activated nodes
infected by an epidemic that begins from i0 and j0. We exploit the connection between percolations and
the one-period SIR process, predetermining which links in the network will transmit. However, we do not
condition on the event that there is some overlap between the diffusions (in Theorem 1, this is encoded in
the object Γn and is assumed), and do not take expectations over En. However, we do take expectations
over percolations. We call this version of the Jaccard index J . We generate a single draw of En and then
hold it fixed. We simulate the process 2,500 times, and then take the average over simulations at each time
period to get J (T ).

Figures 2a and 2c indicate that there is generally little overlap between the diffusions until the process
has reached the diameter of the graph and saturated the network. Recall that when J (T ) is close to zero,
this implies that the share of nodes that would be activated by both starting conditions as a share of the
total activations is small. Hence, this implies that the activation paths are following very different portions
of the network. This lack of overlap is despite the fact that i0 and j0 are extremely local. For q = 4, at
T = 5 (the halfway point to the diameter of Gn), the value of J = 0.055 indicates almost entirely distinct
processes. For q = 2, at T = 9 (again half of the diameter of Gn), the value of J = 0.32. These results are
consistent with the theoretical results: there exist time periods early on in which the diffusions are almost

13Recall the time period bounds from Assumption 2.
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entirely disjoint. Empirically, these results demonstrate that the diffusions remain disjoint for a relatively
long period of time.

While it is clear that our simulations are highly sensitive to measurement error, regardless of whether
q = 2 or q = 4, the changes in sensitivity are instructive. Comparing q = 2 to q = 4, the simulations
demonstrate that the diffusion process is much more sensitive in terms of the extent of diffusion with lower
dimension, rather than the location. This is because q = 2 ensures that a greater fraction of connections
are “local” – therefore, there can be less local perturbation. However, i.i.d. connections lead to many more
activations. Nonetheless, we note that there is still severe sensitive dependence on initial conditions with
q = 2 – in the short run only a third of the diffusion overlaps on average.
Forecast Errors. Next, we simulate a version of Theorem 2. To do so, we simulate the error network, En, as
an Erdos-Renyi graph with links that are i.i.d. with probability βn = 1

10n = 1
40000 , implicitly setting δn = 1.

We simulate 2,500 iterations of the SIR process on both the fixed Ln and Gn = Ln ∪En, with En re-drawn
in each simulation. We do so for the Ln generated with both q = 4 and q = 2. Average graph statistics
for each Gn are shown in Table B.1. Note that the degree distribution stays quite similar, as the average
additional degree from En is 0.100 for both sets of simulations. The initial seed i0 is chosen uniformly at
random and held fixed throughout the simulations. We then compute the empirical analogue of ŶT (Ln)

ŶT (Gn)
, the

ratio of the expected number of ever-activated nodes under each process.
In Figures 2b and 2d, we plot the simulated values of ŶT (Ln)

ŶT (Gn)
over time for each graph. For q = 4, the

minimum ratio is attained at T = 13 with a value of 0.780, meaning the policymaker would underestimate
the extent of the diffusion by 22%. Once the diffusion on Gn reaches the diameter of the graph, the ratio
increases towards a value just below one. For q = 2, the minimum ratio is attained at T = 28, taking a value
of 0.169. With a lower-dimension diffusion process, the simulations are much more sensitive to additional
links in En. In the Appendix B.6, we show that with q = 2 and βn = 1

100n , the minimum ratio of ŶT (Ln)

ŶT (Gn)

is still much smaller than the values attained with q = 4. The shape of the curves in Figure 2b and 2d are
similar to our theoretical results, since our results focus on asymptotic results where the diffusion cannot
reach the edge of the network. Hence, the ratio in our theoretical results will continue to decline. Appendix
Figure B.1 shows exactly this phenomenon by separating the ratio into separate curves for ŶT (Ln) and
ŶT (Gn) – the separation between the two curves is maximized just after the diameter of Gn is reached.14

Consequentially, the decline in the period prior to reaching the diameter of Gn lines up exactly with the
results anticipated by Theorem 2.

7. Empirical Applications

We consider three empirical applications. The first examines the COVID-19 pandemic. It demonstrates
how only local linking can still cause errors in diffusion, although the problems are much worse in the
idiosyncratic case. The second example studies mobile phone marketing in India, which showcases our results
in a much smaller scale setting. Here, sensitive dependence on initial location has much more dramatic results
– volumes of diffusion are more robust in this setting because the networks themselves are much smaller.
Finally, we consider the diffusion of a weather insurance product in China. Here, we consider how errors in
a diffusion model could impact statistical power when estimating peer effects.

7.1. Data from the COVID-19 Pandemic. Kang et al. (2020) introduces a dynamic human mobility
flow data set across the United States, with data starting from January 1st, 2019. By analyzing millions

14Note that the ratio asymptotes with T to a value just below 1, as the additional links in Gn allow for there to be more overall
activations in expectation than in Ln.
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(a) q = 4 (b) q = 4

(c) q = 2 (d) q = 2

Figure 2. Panels 2a and 2c show simulations of Theorem 1, while panels 2b and 2d show
simulations of Theorem 2. Panels 2a and 2c each fix a separate draw of En, then each choose
a fixed j0. We then simulate 2,500 diffusion processes while tracking the Jaccard index after
perturbing the initial seed location. In Panels 2b and 2d, we simulate 2,500 iterations of the
diffusion process on both Ln and Gn for each value of q, re-drawing En for each simulation.
We then track the expected number of ever-activated nodes under each simulation at each
time period, and then take the ratio.

of anonymous mobile phone users’ movements to various places, the daily and weekly dynamic origin-to-
destination population flows are computed at three geographic scales: census tract, county, and state. We
study tract-to-tract flows on March 1st, 2020, at the start of the COVID-19 pandemic in the United States.
Note that this date was before the WHO declared COVID-19 a pandemic and before the United States
declared a national state of emergency. For the sake of computational tractability, we focus on a region of
the United States that contains all of California and Nevada, along with a small portion of Arizona.

We use this real-world dataset to simulate disease transmission as in Section 6. One approach would
be to construct a network with unweighted edges between two census tracts if at least one person moves
between them. However, this results in an extremely dense graph. The resulting graph has a diameter of 4,
a mean degree of 143.82, and a max degree of 991. The dense network will result in the epidemic spreading
everywhere in a very short time, negating the need for forecasting.15

15The researcher may use the dense network and assume that pn is very small. However, with the dense network, the resulting
disease process will look like an Erdos-Renyi random graph, which still follows an exponential diffusion process, rendering the
forecast exercise pointless. Formally, consider the case where Gn is a complete network. Then, the resulting diffusion outcome
can be modeled by dropping links in Gn with i.i.d. probability 1− pn. The result will then be an Erdos-Renyi random graph
generated with probability pn, which induces exponential diffusion.
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Realistically, researchers may decide to “prune” the network by only including links where there is sufficient
traffic between two census tracts. In this case, a missing link implies a flow of people between two places,
rather than missing a single individual contact. Hence, we construct the observed Ln by linking tracts if
the average flow between them (averaging over directions) is greater than six trips (the 93rd percentile of all
flows). We then consider two ways to define the “true” base graph Gn. The first, denoted G92

n links tracts if
the average flow exceeds five trips (the 92nd percentile), meaning that E92

n includes links of exactly 6 trips.
Further discussion of the pruning procedure is given in Appendix C. The other, Gβn, adds links i.i.d. with
probability βn = 1

0.32n corresponding exactly to the extra links missed going from the 5 trips to 6 trips, with
these links now placed idiosyncratically. Properties of the resulting Ln and Gn are shown in Table C.1.

First, we simulate a version of Theorem 1, tracking J (T ). We choose j0 in a conservative fashion – after
fixing a i0 uniformly at random, we choose the set of potential j0, Ji0 , to be all nodes at distance two from
i0
16. In G92

n , the local neighborhood containing all potential j0, Ui0 , makes up 1.57% of the graph, while
the set of Ji0 makes up 81.68% of the local neighborhood. In Gβn, Ui0 contains all j0 comprises 2.93% of the
graph, and Ji0 makes up 93.46% of Ui0 .

We plot J (t), the amount of overlap between percolations over time, in Figures 3a and 3c. These results
follow the same qualitative pattern as before – J (t) stays close to zero for the first few time steps while
the epidemics are almost entirely distinct, but then slowly increases. For the first few time periods, this
graph shows dramatic sensitive dependence on the initial starting point of the epidemic. For the pruning
procedure, halfway to the diameter of G92

n , J = 0.42. For the i.i.d. procedure, halfway to the diameter of
Gβn, J = 0.023.

Next, we simulate Theorem 2 and calculate the share of Yt(Ln)/Yt(Gn) for our two Gn measures. In
the first, we look at G93

n = Ln, where Ln amounts to pruning about 18 percent from the G92
n graph. Here,

because G92
n is a (non-stochastic) function of the data, we hold it fixed and take expectations only over the

path of the epidemic.17 In the second, we generate Gβn via Ln ∪En, where En has i.i.d. links to generate the
same density as the error graph in the pruning procedure. In both cases, we choose i0 uniformly at random
and hold it fixed across simulated epidemics.

We plot Yt(Ln)/Yt(Gn) over time in Figures 3b and 3d. For G92
n , the pruned network, the minimum ratio

of 0.442 is achieved at T = 8. We note that this ratio has the same qualitative pattern as in the simulated
graph in Section 6 – the ratio achieves a minimum just before reaching the diameter of G92

n , and then slowly
increases. When compared to the previous simulations, the ratio increases much more slowly. This result
comes from the larger dispersion in degrees – it takes longer for the disease to fully saturate the network,
because there are more nodes with very few links. When compared to the i.i.d. errors in Gβn, the minimum
ratio of 0.234 is achieved at T = 9. One explanation for i.i.d. errors leading to additional underestimation
follows from Theorem 2 and considering the role of δn. The pruning procedure induces spatially clustered
errors, or δn << 1, so for the same level of error, the spatially clustered additional links in G92

n will not jump
as far as Gβn, leading to fewer “new” shells of infection.

7.2. Diffusion in Mobile Phone Marketing. As a second empirical exercise, we study the diffusion of
high-value information in Indian villages. The goal of this exercise is to highlight how the measurement
issues can crop up in settings with much smaller networks, and how the initial seed condition plays a much
larger role here. In Banerjee et al. (2019), one of this article’s authors, along with collaborators, conducted a

16We found that when choosing Ji0 based on the location of links in En, the distance from i0 to the set of potential j0 was
typically three. Therefore, our choice of nodes at distance two is truly conservative, in the sense that we choose j0 to be closer
to i0 than what is used in the theory.
17In the rest of the paper we consider expectations for Theorem 2 over both the epidemic and error graph.
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(a) Pruning (b) Pruning

(c) I.I.D. (d) I.I.D.

Figure 3. Simulated version of Theorems 1 and 2 on Ln and Gn generated from Census
tract flow data in California and Nevada. Panels (A) and (C) show simulations of Theorem
1, while Panels (B) and (D) show simulations of Theorem 2.

randomized controlled trial wherein randomly selected people in villages in Karnataka were given information
on a program where they could receive a high-value cell phone or smaller cash prizes if they participated.
The information about the program then diffused throughout the village.

We use this data to study the robustness of the diffusion process in an information setting. Details on
how the graphs are constructed are in Appendix D. In a change from the prior simulations and analysis,
many of the villages have multiple initial seeds. There are on average 3.26 seeds per village and 96 nodes
per village.

We first estimate the passing probability pn for the diffusion process. Villagers could indicate they heard
about the cell phone program by making a free call to the researchers. While we observe data on the sampled
networks connecting households, we only observe the total number of calls received by the researchers in
each village, and we do not observe whether a given household made a call. Hence, we back out the passing
probability p̂n using the method of simulated moments. Formally, we consider the following problem. Let
V = 69 be the number of villages in our data (for which we have network data) and let Cv be the number
of calls received in village v. We treat the number of calls as the number of ever-activated nodes. We then
simulate a SIR process with passing probability p and record the number of simulated calls after T periods.
Let Ĉsv(p) be the simulated number of calls in simulation s under passing probability p. Then, we choose p̂n
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as follows:

p̂n = argminp

(
1

V

69∑
v=1

(
Cv −

1

s

∑
s

Csv(p)

))(
1

V

69∑
v=1

(
Cv −

1

s

∑
s

Csv(p)

))
We set T = 15, just larger than twice the average diameter of a village graph and use 2,500 simulation
iterations. We estimate a value of p̂n = 0.13, meaning that each household transmits the information with
roughly one in six chance. We then use this estimated p̂n to conduct simulations.

Next, we consider the error structure En on our observed network Ln. Since our data has many separate
villages, we consider a slightly more complex structure for En. Let nv be the number of households in
village v. Then, we form En by taking the union over draws of Erdos-Renyi random graphs in each village,
where βvn = 1

2nv
changes in each village to keep measurement error proportional to village size. We choose

a proportionally larger value of βn because there are multiple seeds – because the graph becomes saturated
much more quickly, measurement error has less time to become a problem.

To simulate a version of Theorem 1, we choose a modified seed set for each village. Recall that most
villages have multiple seeds. Here, we perturb the seed set in each village in a conservative manner. Say that
a seed set is comprised of {i0, j0, k0} in some village. We choose one element of the seed set at random, say
k0, and then replace k0 in the seed set with a neighbor chosen uniformly at random. This corresponds to a
local neighborhood of 3.5% of the entire network on average. Despite the conservative perturbation, we still
find similar results (Figure 4a). As before, we track J (t), the Jaccard index for the aggregate patterns of
diffusion across all villages over time. While the value of J (t) does not start at 0 (as in the prior simulations),
given the multiple seeds and that we conservatively only perturb one, it remains below 0.75, indicating that
despite the conservative perturbation, there is still not complete overlap in the perturbed diffusion processes.
Halfway to the diameter of Gn, the average value of J = 0.61 indicates a lack of overlap.

We then simulate a version of Theorem 2. We simulate 2,500 diffusion processes across each village,
adding up the total number of households who ever get the information and averaging across simulations.
We run this both on Ln, the set of village graphs, and Gn constructed as above (with a new draw of Gn in
each simulation iteration). As shown in Figure 4b, the ratio ŶT (Ln)/ŶT (Gn) monotonically decreases over
time, taking value 0.854 at T = 15. Despite the village-level networks being relatively small, in aggregate,
the econometrician still underestimates the extent of diffusion by nearly 15 percentage points

7.3. Treatment Effects with Spillovers in Networks. As a third empirical exercise, we study the
uptake of insurance in rural China. The goal of this exercise is to illustrate how the problems we identify
in diffusion could affect conclusions from an estimated model of peer effects. If nodes are seeded with
information, then the take-up behavior of a product may be a function of “exposure to information” through
the diffusion process. A typical peer effects regression would consider the outcome regressed on this exposure
to treatment as defined through a diffusion; our analysis suggests that results could be biased and estimators
could lose considerable power.

In Cai et al. (2015), farmers receive information about a weather insurance product, a highly valuable
product with low adoption rates. Intensive information sessions were randomly given to some farmers. The
authors then measured the take-up by other people in the same village, who were not part of the first set
of information sessions. We consider a measure of exposure to treatment based on a model of information
flows.
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(a) (b)

Figure 4. Simulations of Theorems 1 and 2 on village networks from Karnataka, India.
Panel (A) shows a version of Theorem 1. We perturb one seed uniformly at random by a
single set in each village. Then, we simulate 2,500 diffusion processes on a fixed draw of Gn,
computing the average Jaccard index of the process. Panel (B) shows a version of Theorem
2. We take 2,500 diffusion simulations on Ln and Gn, where Gn is constructed at the village
level with βn = 1

2nv
. nv is the number of households in the village.

We first take the data from Cai et al. (2015) and build the village networks.18 We convert the directed
networks from the paper to undirected networks, where household i is linked to household j in our construction
of the data either if i reports j as a link, j reports i as a link, or both.19 The resulting graph is denoted Gn,v
for village v. Graph statistics for the villages are shown in Table E.1.

We consider an exposure measure based on a model of information flows. For a generic graph, let A be the
corresponding adjacency matrix. Let s be a vector of indicators, with an entry equal to one if the household
attended an information session. For a given pn and T , we define the vector of “diffusion exposure” as,

DEA =

(
T∑
t=1

(pnA)t

)
s,

which calculates the expected number of times that each individual hears information through repeated
passing over T periods (Banerjee et al., 2019). We imagine that the take-up of insurance in Cai et al. (2015)
increases in such exposure to treatment: hearing more about the product through conversation makes one
more likely to take up.20 Note that this exposure measure is slightly different than a typical SIR model. It
considers the eventual outcome as depending on the total number of times person i hears about the topic
through T periods, rather than a once-and-for-all decision the first time someone hears about the product.
This model is perhaps a more realistic description of the take-up of an insurance product. Nonetheless, the
mechanics of error we outline in the paper have analogs for this kind of model.

We then simulate an experiment. We treat the data from Cai et al. (2015) as the true network Gn. We
then regress insurance take-up (yi,v) on the exposure measure (DEGi,v), a set of household controls (Xi,v),

18In their data collection, the authors “top-code” the number of links each household has, by only recording five outgoing links.
This possibly generates measurement error as well, since it creates an artificial upper bound for all high-degree nodes, but we
ignore it for our illustrative analysis (as do they in their empirical analysis).
19Studying an OR network may be more robust in capturing exposures due to measurement error (Banerjee et al., 2013).
20Following Banerjee et al. (2019), we compute this measure within each village, setting T equal to the diameter of the village
network. We set pn to be equal to one divided by the maximum eigenvalue of the village adjacency matrix. This is the critical
value of pn such that for pn less than this value, entries of (pnA)t tend to zero as t → ∞, and some entries diverge if pn is
larger.
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and village fixed effects (µv),

yi,v = α+ γDEGi,v +X ′i′vδ + µv + εi,v,

where i indexes household and v indexes village. To do so, we subset the data to only households who
did not receive the initial informational intervention. We standardize the exposure measure to have mean
zero and standard deviation one for the sake of interpretability. Results are shown in Table 1. A one
standard deviation increase in diffusion exposure increases insurance uptake by 2.9 percentage points (s.e.
1.2 percentage points, p = 0.02), relative to a mean of 45.9%, in a linear probability model.21

Table 1. regression of diffusion exposure on insurance uptake

Insurance Uptake

Diffusion Exposure 0.029
(0.012)

Household Controls Yes
Village FE Yes

Uptake Mean 0.459
A regression of diffusion exposure on insurance uptake, with diffusion exposure computed from the networks collected in Cai

et al. (2015). Standard errors are clustered at the village level with 2,676 observations.

We then drop links in Gn with i.i.d. probability βn and construct Ln. That is, we imagine that there is
a small measurement error in our survey process (or network construction process) and for this exercise we
allow the error to be fully i.i.d. Our simulation corresponds to what the researcher would have observed had
information flowed over Gn, but they instead measured Ln.

For each village v, we drop links with probability βv,n, operationalized by intersecting the corresponding
village graph with an Erdos-Renyi random graph with links that form with probability 1− βn. We vary the
value of βv,n = 1

kd̄v
, where d̄v is the village average degree and k is a specified constant.22 We vary k from

5 to 15 or βv,n ranging from 0.037 to 0.0123 and recompute the diffusion exposure (DELi,v), re-estimate the
regression, and record the point estimate and p-values. We repeat this 2,500 times for each value of k. Let
γ̂(Gn) and γ̂(Ln) be the coefficients of interest from the two regressions.

Figure 5 plots the joint distribution of the bias percentage—the percentage difference between γ̂(Ln) and
γ̂(Gn)—and the rejection level (one-to-one with the p-value) of the null of the coefficient γ̂(Ln) being equal to
zero. While on average the bias is small, for any given draw we see large dispersion in the difference between
γ(Gn) and γ(Ln) even when a very small fraction of links are dropped. In the real world, the econometrician
observes only a single draw—one instance of this phenomenon. The result shows that enormous biases are
possible in any single draw. Here, even with the smallest β = 0.012, we find the bias still has a large standard
deviation of nearly 8 percentage points. With β = 0.037, biases upwards of 20% in magnitude are common.

We also see a range of p-values: as we decrease β, we would expect to see the p-values converge to the
true value. With no noise, we know p = 0.02 and so for very small β we might imagine that we reject the
null of no peer effect at the 95% level (0.02 < 0.05). However, with β = 0.037, we fail to reject (at the 95%

21This estimated value is almost exactly half of the value reported by Cai et al. (2015) of 5.8 percentage points. Given that
we use a different specification, the difference is not surprising, but it is reassuring that the results are of a similar order of
magnitude.
22We scale βn by the mean degree, rather than the number of nodes, for the following reason. In order to drop a link, two things
must occur: the link must exist in the first place, and that indicator must be equal to 0. In order to ensure we actually βn
percent of links, we must scale by degree – because the graphs are sparse, if we scale by nv , we drop fewer links than intended.
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level) the null of no peer effects over 15% of the time. Even with β = 0.012, we still fail to reject the null of
no peer effects 4.5% of the time. This means that with a very small error, between roughly 5% to 15% of
the time we may be unable to reject a null at the 95% level.

Figure 5. The joint distribution of the difference in γ̂(Ln) and γ̂(Gn) (in percentage terms)
and the level at which we can reject the null that γ̂(Ln) = 0 for different values of k. As k
increases, βv,n decreases. In parenthesis, we include the average value of the corresponding
βn across villages. The red, dashed, vertical line denotes the level at which we can reject
γ̂(Gn) = 0. The black dotted line shows rejection at the 95 percent level.

8. Discussion

We have studied the lack of robustness to extremely small quantities of mismeasurement in SIR diffusion
models on networks. Such models are widely used to conceptualize epidemics, information flow, and
technology adoption, among other applications. For the bulk of the paper we analyze what we call polynomial
diffusion over these time horizons, capturing the idea that if it were globally exponential then the diffusion
would blanket the society almost immediately. These reflect real-world contagion processes where geography,
homophily, transport infrastructure, and community interactions shape the diffusion.

We have shown that even when the missed links constitute only a vanishing share of the overall links and
are only concentrated locally to any node in question, the problems persist. This means that the problems
are not consequences of long-range shortcuts and transitioning polynomial-like diffusion to exponential-like
diffusion as in the small worlds literature. Rather, the point is that even small infrequent errors that are
entirely localized wind up aggregating throughout the SIR process, thereby generating the aforementioned
problems.

Our results on non-robustness are very negative about the ability to forecast diffusions, and a resourceful
researcher may feel that there are solutions to circumvent these issues. For example, network data collection
is known to be imperfect, but the econometrician may have knowledge of the structure of errors. In the
case where the error has a known structure, the econometrician can correct for sampling error by integrating
over the error (Chandrasekhar, 2016; Hsieh et al., 2024). However, this approach will only work when
the error model is correctly specified; any misspecification will simply revisit the same problem. Since the
problem is acute even for very small error rates, the ability to “approximately” adjust for the sampling error
is insufficient. Moreover, this type of adjustment is likely missing the forest for the trees – our results give
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the econometrician the benefit of knowledge of a large number of typically unknown quantities and they still
struggle to forecast diffusions as a result of this noise.

Our work demonstrates the general care needed in identifying the limits of what models can reasonably
predict to inform policy. Tools must be used for exactly what they are developed. Aggregate concepts
geared towards retrospective calculations may be good for just that purpose– certain aggregates, e.g., R0,
may better be used as descriptive rather than prescriptive tools.

This raises practical concerns for any normative work that builds on the scaffolding of such models. Almost
certainly the failure of robustness would propagate to welfare calculations, which often rely on the extent
of diffusion or the locations (or composition or compartments) of diffusion, if not both (Acemoglu et al.,
2021; Fajgelbaum et al., 2021). It is possible, though requires future work, that the susceptibility to small
measurement error presents an argument for policymakers to respond earlier and much more aggressively.
Barnett et al. (2023) make the point that in an uncertain world, policymakers may want to pursue more
aggressive containment policies to guard against worst-case scenarios. The full decision theory exercise is
beyond the scope of this paper, but it should be clear that this is the thrust of the statistical force given the
massive uncertainty we document.

This paper is specific to SIR models on graphs, but the phenomenon need not be. In fact, the same
sort of perturbation robustness failure may impact general models of treatment effects with spillovers (e.g.,
Aronow and Samii (2017), Hardy et al. (2019), and Athey et al. (2018)). The final empirical example that
we presented, using the insurance take-up data from Cai et al. (2015), suggests this is exactly the case. An
examination of perturbation robustness failure in general models of treatment effects with spillovers is likely
worth studying in its own right which we leave to future work.
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Appendix A. Proofs

Proof of Lemma 1. We can start by partitioning Ln into K disjoint “tiles", which generates strictly less
activations than if the tiles were still connected. The tiling is a counting device – instead of counting overall
activations, we count the number of tiles that are activated, and then scale those values by the number of
periods for which the diffusion spreads. Each tile is composed of a subset of Ln that is disjoint from every
other tile.

Let L̃n be Ln divided into K evenly sized tiles – note that K will depend on both n and T , along with the
other model primitives. We suppress this dependence for the sake of compact notation. Note that L̃n is not
connected, by definition. We define XT := EPn(Gn),En [Xt], the expected number of tiles that are activated in
time step T . We impose the following condition in the construction of the tiling for some constant C ∈ [0, 1):
C ≤

∑T−1
t=1 Xt/K for all T . This ensures that there are inactive tiles for all T , such that we do not have

saturation of the network by the diffusion. We can always construct a tiling where this is the case – by
subdividing Ln into balls of radius T and growing n sufficiently quickly relative to T this will be possible.
This restriction on the tiling is not entirely without loss. Instead of imposing that the diffusion does not
reach the edge of Ln, we need to impose a bound so that it does not reach the edge of any of the tiles in L̃n
– as shown in the proof, this is implied by Assumption 2.

For the sake of tractable computations, we construct a lower bound by only tracking diffusion spread in
each tile that is the result of the first seed in each tile. For this simplified computation, we can compute, for
T ≥ 1:

XT = βnδnpn︸ ︷︷ ︸
Diffusion Jumps

× KT︸︷︷︸
Nodes in Tiles to Jump To

×
T−1∑
t=0

XtST−t︸ ︷︷ ︸
Weight by past spread

= βnδnpn

(
n− n

K

T−1∑
t=1

Xt

)
T−1∑
t=0

XtST−t

= βnpnn

(
1− 1

K

T−1∑
t=1

Xt

)
T−1∑
t=0

XtST−t

≈ βnδnpnn
T−1∑
t=0

XtST−t

where the approximation holds up to a constant by the construction of the tiling.
We can begin by substituting in:

XT = βnδnpnn

T−1∑
t=0

Xt(T − t)q
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= βnδnnpn [T q

+

(
T−1∑
t1=1

(T − t1)q

(
βnδnpnn

[
tq1 +

t1−1∑
t2=1

(t1 − t2)q (βnδnpnn [tq2 +×...])

]))]
Note that the nested summation must be polynomial in T , despite the multiplicative structure. While we
have combinatorial growth in the number of terms, we are only multiplying polynomials of T together. As
polynomials are closed under multiplication, the result will be a polynomial in T , with the lead term to be
T qβnδnnpn.

To complete the proof, we verify the validity of the tiling with the given assumptions. We verify
compatibility with Assumption 2. First, note that to have links in En, in expectation, we must have:

pnδnT
q < n⇒ T <

(
n

pnδn

)1/q

Second, recall the assumption we made in the tiling: we have to be able to divide Ln, the base graph, into
enough tiles. We can collect the relevant conditions:

K(T, n) ≥
T−1∑
t=0

Xt ≥ XT−1 ≥ βnδnpnn(T − 1)q,

n > K(T, n)ET ⇒
n

T q+1
> K(T, n)

The first statement holds by construction and evaluating based on prior computations. The second statement
enforces that the total expected number of activations in all tiles must be less than n – mechanically,
this enforces that not all nodes are activated in expectation. We can combine inequalities to get n

T q+1 >

βnδnpnn(T − 1)q. Given that βn > 1
pnδnnT q

, asymptotically this gives us that T < n
1
q+1 . This is the stricter

of the two upper bounds on T , so it binds (and is exactly the upper bound of Assumption 2).
We can consider the resulting structure of the tile level graph, despite En not necessarily being connected.

This will give us a lower bound on T , as we implicitly assume that the tile level graph to be connected with
probability one. We imposed that there are v(T, n) = n/K(T, n) nodes per tile. Given βn, the probability
of connection between two tiles will be 1 − (1 − βnδ)v(T,n)2 ≈ βnδv

2(T, n). We want this quantity to be at
least log n/n. Re-writing our expression for the tile link rate in terms of K yields the following expression.

βnδn
n2

K(T, n)2
>

log n

n
⇒ βnδn >

log n

n3
K(T, n)2.

We can then consider this expression when βn is as small as possible, and K(T, n) is as large as possible,
and note that this is consistent with Assumption 2 that

1

pnnT q
>

log n

n

1

T 2q+2
=⇒ T > (pn log n)

1/(q+2)

Note that this is a (much) stricter lower bound that what is imposed by Assumption 2. Thus the tighter
lower bound will still give the desired properties. This completes the proof. �

Proof of Theorem 1. Fix the percolation Pn and recall in what follows Γn is respected. All distances are
with respect to Pn ∩Gn, meaning the intersection of the realized graph and the realized percolation. Recall
that e1 is the closest node to i0 in Pn that also has a link in En. Let e2 be the second closest such node.

Define r := d(i0, e2), the distance between i0 and e2. Set T = κ · r for some κ > 0, which determines the
diffusion duration. Then let an = op(r) growing in n be a distance and Un := Bi0(an). Note |Un|/T q+1

n →p 0

by construction, meaning that Un is a sequence of local neighborhoods vanishing relative to the diffusion.
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Then pick bn = r − can for c ∈ (0, 1), constant in n. Notice the lens formed, `(an, bn; r) := Un ∩ Be2(bn) is
of constant order relative to Un. Let Ji0 := `(an, bn; r), completing the construction of Ji0 .

We can then prove the first part of the Theorem. Every j0 ∈ Ji0 reaches e2 with at least sn = cbn − 1

more steps. At that point at least sqn activations occur about alter e′2 of e2. We can think of a new diffusion
starting at e2 for at least sn periods. The region around the alter of e2 will be the first region seeded, and
there will be potentially more in expectation, depending on the parameters. By Lemma 1, the number of
regions activated in expectation will be at least: nβnδnpnsqn. Recall that this result relies on choosing a tiling
with K regions – we take the regions to be the catchment areas themselves. Note that K is growing in n.
Then, it follows that:

P(|Xsn − nβnδnpnsqn| ≥ Kε) ≤ 2 exp
(
−2ε2K

)
→ 0

Via an application of Hoeffding’s inequality to the set of indicators for if a catchment region has been
activated. This completes the first part of the proof.

We can show that ∆n(i0, j0) < c < 1 for some positive fraction independent of n. For any P , the distance
between the two nodes is order bn, so the lens between them has order bqn as does the disjoint set. But this
is the same order as sqn which we saw as the volume of the activations emanating from alter e′2. So the result
follows as this holds for any P that respects Γn. �

Proof of Theorem 2. We can first note that the numerator is exactly ŶT (Ln) = ET and can be bounded from
above using Assumption 1. Then, we can construct a tiling and apply Lemma 1.

Formally:

ŶT (Gn) = E

 n∑
j=1

yjT = 1

∣∣∣∣ En + Ln

 ≥ E

 n∑
j=1

yjT = 1

∣∣∣∣ En + L̃n

 .
The lower bound comes from ignoring the spread between tiles – instead, we only allow for inter-tile spread
through En. We will lower bound the expression further by only counting the first activation in each tile.

Note that Lemma 1 provides a lower bound for the number of tiles seeded in each period (only tracking
first activations), but we want the number of nodes ever activated. This will be

∑T
s=0 XsET−s, where we

weight the spread in each period ET−s by the number of tiles seeded for the first time in that period. We must
weight the number of tiles by the volume of (expected) spread given the initial activation time. Therefore
we have the following:

ŶT (Gn) = T q+1 +

T−1∑
s=0

Xs(T − s)q+1

≥ T q+1 + βnpnn

T−1∑
s=0

sq(T − s)q+1

≥ T q+1 +
1

42q+1
βnpnnT

2q+1

where the second bound comes from taking only the term corresponding to T
2 from the sum, which will be

the largest individual term.23

23We assume for the sake of more compact notation that T is even – if odd, simply take the floor of T/2 and the order of
magnitude and thus the proof is preserved.
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Now we can consider our object of interest using these bounds:

ŶT (Ln)

ŶT (Gn)
≤ T q+1

T q+1 + T 2q+1βnδnpnn/42q+1
=

1

1 + T qβnδnpnn/42q+1

Then, by Assumption 3, this quantity will go to 0 as n→∞ and T →∞. �

Proof of Proposition 1. For (1), We note as mn = o(
√
n) and βn ∈

(
1

pnnT q
, 1
n

)
, then βnmn = o

(
1√
n

)
,

βnm
2
n = o(1). Then we have that

P
(
No links amongst

(
mn

2

)
found

)
= (1− βn)(

mn
2 ) ≈ 1− βn

(
mn

2

)
= 1− βn

m2
n −mn

2
= 1− o(1) + o

(
n−1/2

)
→ 1,

where we use the binomial approximation. Note that this will tend to 1 even in the most adversarial case,
where βn is as large as possible (mn = o(

√
n)).

For (2), it suffices to show that a necessary condition for the law of large numbers fails. Let enij denote
a potential edge in En and znij = enij/βn which is a normalized version. Then we can calculate, for sij a
dummy for the pair being sampled,

var

 2

mn(mn − 1)

∑
i,j:sij=1

znij

 =
1

β2
n

2

mn(mn − 1)
βn(1− βn) =

2(1− β)

m2
nβn −mnβn

.

For the law of large numbers to apply we need the variance to go to zero and therefore we need m2
nβn to

diverge, and this fails under the hypothesized condition. �

Proof of Theorem 3. We assume the policymaker observes an activated agent with a known probability αn.
The total number of activations can be accurately estimated by dividing the observed total count by αn.
Say that a region has x activations: then the probability of at least one activation being detected will be
1 − (1 − αn)x ≈ αnx. Because this expression is approximately linear, the probability of detecting at least
one activation in period t will be Θ(αnt

q+1) via Assumption 1. We then want to scale by the number of
regions activated in each period. This is exactly analogous to Lemma 1. Here, we take the tiles used in the
proof to be the regions themselves. Recall that at time T there will be at least βnδnnpnT q regions activated
in expectation – lower bounding K∗T . So we have that

K̂T

K∗T
≤ αnβnδnnpnT

2q+1

βnδnnpnT q
+ αn

o (T q)

βnδnnpnT q
≤ αnT q+1 < 1.

as n→∞, which completes the proof. �

Proof of Theorem 4. We can begin with a similar computation to the polynomial case, though the exponential
nature of Et makes exact computations possible. We begin with the analogue of Lemma 1, again working with
a tiling of Ln. Again assuming that K(T ), the number of tiles, grows sufficiently quickly we can compute:

XT ≥ βnpnn
T−1∑
t=0

XtST−t = βnδnpnn

T−1∑
t=0

XtqT−t = βnpnδnn(1 + βnδnpnn)T−1qT

Then, we can compute:

ŶT (Ln)

ŶT (Gn)
≤ qT

(
qT +

T−1∑
s=0

βnδnpnn(1 + βnpnn)s−1qT qT−s

)−1
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=

(
1 +

(1 + βnδnnpn)T − 1

1 + βnδnnpn

)−1

This quantity then goes to zero by Assumption 6.
We can then verify the validity of the tiling. We begin with our conditions on the tiling and that not all

nodes are activated in expectation.

K(T, n) ≥
T−1∑
t=0

Xt ≥ XT−1 = βnδnpnn(1 + βnδnpnn)T−2qT−1, and
n

qT
> K(T, n)

in an identical fashion to the proof of Theorem 2. We can chain inequalities to get:
n

qT
> βnδnpnn(1 + βnδnpnn)T−2qT−1

log(n) > log(βnδnpnn) + (T − 2) log(1 + βnδnpnn) + (2T − 1) log(q)

By Assumption 6, we have that βnδnpnn > ε > 0 so the bound reduces to T = O(log n). This restriction is
exactly the first part of Assumption 5. For the second part of the bound, we repeat the same computation
from the proof of Theorem 2, ensuring that the tile level graph is connected almost surely. We know that
the following must hold:

βnδn >
log n

n3
K(T, n)2 =⇒ 1

pnn
>

log n

n

1

q2T
=⇒ q2T > pn log n

2T log(q) > log(pn) + log log(n) =⇒ T >
log pn
2 log q

+
log logn

2 log(q)

So the key condition is T = Ω(log log(n)), which is exactly the second condition on T from Assumption
5. Note that we use Assumption 4 so that this bound is well-defined. This completes the proof of the
Theorem. �

Proof of Proposition 2. Recall that under Assumption 4, and Ln being divided into K(T,N) independent
tiles, we can compute the expected number of regions activated at time T via a recursion in the same way as
before: XT = βnpnn(1+βnpnn)T−1qT . Note that because we assume Ln is divided into tiles, the computation
is exact rather than a lower bound. Note that tracking secondary activations preserves the same order of
magnitude. Then, by the same computation as before we have:

ŶT (Ln)

ŶT (Gn)
≥
(

1 +
(1 + βnδnnpn)T − 1

1 + βnnδnpn

)−1

which goes to 1 as βn = O
(

1
pnn

)
. Verification of the tiling strategy proceeds in much the same way as in

the proof of Theorem 4, which completes the proof. �
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Online Appendix
Appendix B. Simulation Details

To illustrate and expand on the results from the main text, we run a number of simulations. Here, we
describe the simulations in detail.

B.1. Graph Generation. Graph geometry plays a key role in our results. We build a network as follows,
to generate an empirical analogue to the Ln that we study theoretically. Ln is generated as a graph of n
nodes in the following manner.

(1) The base construction of the graph is a q-dimensional lattice, to mimic the properties of Assumption
1. We place nside nodes evenly spaced on [0, 1]q, meaning that there are nqside nodes in the lattice
portion of the graph.

(2) The remainder of n nodes are placed uniformly at random throughout [0, 1]q.
(3) All nodes, regardless of whether they are in the lattice or placed randomly, link to all nodes within

distance r. We set r as:

r = max

{
1

nside − 1
,

√
q

2

1

nside − 1

}
This ensures that the graph is connected, even when q is large and thus nodes can be far apart.

We use the following parameters to generate Ln in the graphs used in the main texts. In the first specification,
we set n = 4, 000, q = 4 and nside = 7. In the second specification, we set n = 4, 000, q = 2, and nside = 50.
To generate Gn, we add links with i.i.d. probability βn. As a base rate, we use βn = 1

10n – in one variant
of parameters, we set βn = 1

100n . Summary statistics are shown in Table B.1 in the main text, and for
additional simulations in Table B.2.

Table B.1. Graph statistics for Ln with n = 4, 000 nodes

Statistic Ln Gn Ln Gn
Dimension 4.0 4.0 2.0 2.0
Diameter 19.0 11.609 93.0 20.439

Mean Degree 10.164 10.263 5.826 5.926
Min Degree 3.0 3.095 2.0 2.0
Max Degree 24.0 24.103 16.0 16.13

Mean Clustering Coefficient 0.265 0.258 0.379 0.37
Average Path Length 7.548 6.018 31.807 10.312

For q = 4, 60 percent of nodes are in the lattice, while with q = 2 62.5 percent are. Statistics for Gn are the
expectation over 2,500 draws of En, which is drawn Erdos-Renyi with n = 4, 000 and βn = 1

10n
= 1

40000
.

B.2. Diffusion Process. We use a Susceptible-Infected-Removed (SIR) diffusion process. Each node is
infected (activated)for a single period, and has the opportunity to transmit the process with i.i.d. probability
pn to each of its neighbors. After nodes are activated, they are removed and cannot be re-activated. We set
the basic reproductive number to be R0 = 2.5, and set pn = R0/d̄, where d̄ is the mean degree in Ln.

B.3. Simulation of Theorem 1. As an analogue to Theorem 1, we simulate SIR processes on a fixed Gn
with slightly perturbed starting points. We choose i0 to be in the center of the lattice of Ln, that forms
the backbone of Gn. Then, we build a set of alternative seeds Ji0 . First, we find the second distance of the
closest link in En – denote this d(e2). Then, all nodes at d(e2) + 1 are included in Ji0 . We then choose a
j0 ∈ Ji0 uniformly at random.
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(a) q = 4 (b) q = 2

Figure B.1. This figure plots the same information as Figure 2, but separated by graph
for both q = 4 and q = 2. The trajectory of ŶT (Ln) initially lags behind that of ŶT (Gn),
leading to the decrease in the ratio shown in Figure 2. As ŶT (Ln) catches up, the ratio
increases.

The SIR process is then run, starting at both i0 and j0. We record which nodes are ever activated at each
step of the process, under each simulation. To follow Theorem 1, we fix the percolation across the simulation
starting at i0 and j0. To do so, we use the fact that for a one-period SIR model, each link can transmit the
disease at most one time. Therefore, we can simulate ex-ante which links will be able to transmit, which
occurs with probability pn, and intersect this with Gn to get the realized percolation.

We then compute a standard Jaccard index to track the intersection of the two epidemics. Let IP (i0)

be the set of ever-infected nodes under the epidemic from i0, and IP (j0) be the corresponding set from j0.
Then, we compute:

J := EP
[
|IP (i0) ∩ IP (j0)|
|IP (i0) ∪ IP (j0)|

| Ln, En
]

We define the Jaccard index J in a slightly different fashion than to ∆n, the Jaccard index in Theorem 1.
We no longer condition on Γn, which ensures some overlap. In addition, we consider the expectation over
draws of the diffusion process.

B.4. Simulation of Theorem 2. To investigate the content of Theorem 2, we directly simulate the sample
analogue. For 2,500 simulations, we do the following. We choose the initial seed i0 uniformly at random,
and fix it throughout the process. The SIR process is simulated for T periods, where we set T to be twice
the diameter of Ln.

(1) Simulate the SIR process on Ln.
(2) Generate a draw of En, with links i.i.d. with probability βn.
(3) We define Gn := Ln ∪ En, and simulate the SIR process on Gn.

We track the number of ever-activated nodes in each simulation at each time step. We then take the average
over simulations at each time step. In the main text, results are shown in Figure 2. Additional results are
shown in Figures B.1 and B.2.

B.5. Aggregate Patterns Are Well-Approximated by Compartmental Models. As an additional
exercise, we study the approximation of the diffusion process by a standard differential equations SIR
compartmental model. Instead of the network based SIR model, we assume the policymaker estimates
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(a) q = 4, Ln (b) q = 4, Gn

(c) q = 2, Ln (d) q = 2, Gn

Figure B.2. Simulations meant to emulate Theorem 2, disaggregated into the standard
SIR framework. The figure is a result of averaging over simulation draws. Note that we see
a larger spike in activations under Gn, which makes intuitive sense – the additional links
allow for more infections to occur. We show results for both q = 4 and q = 2, both with
βn = 1

10n . Note that the gap between total activations with q = 2 is larger, as the additional
links have a larger effect.

the parameters of a version of the standard differential equation SIR model. Changes in the number of
susceptible (S(t)), infected (I(t)), and removed (R(t)) at time t are given by:

Ṡ(t) := − s
n
S(t− 1)I(t− 1)

İ(t) :=
s

n
S(t− 1)I(t− 1)− rI(t− 1)

Ṙ(t) := rI(t− 1)

Where s and r are parameters that govern the disease process. Note that R0 = s/r. This model is exactly
a discrete-time analogue of the standard SIR model.

We assume that the policymaker estimates ŝ and r̂ from observed data via a set of moment conditions,
matching both the number of infected and removed people at each time step. It will be useful to define some
additional notation. Let N be the number of simulations. Let Isn(t) be the number of infected people at time
t in simulation n. Let Rsn(t) be defined analogously for recovered. Let I(t; s, r) be the number of infected
at time t with parameters r and s. Let R(t; s, r) be defined analogously. Then, the policymaker solves the
following problem for each simulation run, given T periods of data. We then collect the moment conditions
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in the following vector:

Mn(t) =

(
Isn(t)− I(t; s, r)

Rsn(t)−R(t; s, r)

)
Then the policymaker solves:

{ŝn, r̂n} := argmins,r
1

T

T∑
t=1

Mn(t)′Mn(t)

For each simulation. Then, we compute the following quantities, getting the average trajectory from the
fitted SIR models.

Ī(t) =
1

N

N∑
n=1

I(t; sn, rn), R̄(t) =
1

N

N∑
n=1

R(t; sn, rn), R0 =
1

N

N∑
n=1

sn
rn

We can also compare directly to the metric of average ever activated, our policy object of interest for much
of the main text, by computing Ī(t) + R̄(t) at each time period.

We conduct two exercises. In the first exercise, we simulate a diffusion process on Gn for T periods. We
then estimate the parameters of interest, (r̂, ŝ) at t̂ = T/4 and we generate forecasts from the compartmental
model. We compare this to the actual diffusion trajectory. The second exercise replicates the first, with the
only change being that we simulate the diffusion process on Ln instead. Note that this is not what generates
the diffusion process in the “real world”—that is diffusion on Gn. However, together the two simulations
capture two features: (a) the deviation of the mean-field model from the underlying discrete process and
(b) how the deviation depends on the relative structure of Gn to Ln = Gn − En. We repeat both sets of
simulations for both q = 4 and q = 2.

Figure B.3 presents the results. We begin with q = 4 and it is helpful to look to the diffusion on Ln first
in Panel B.3a. This shows how well the mean-field approach captures the dynamics on a network structure
ignoring links in En. In the periods where the SIR process is fit to the simulated data, the fit is very good.
The estimated R̂0, derived by taking the average across simulations of ŝ/r̂, is 1.46 under ŶT (Ln), well below
the true R0 of 2.5.24 The estimated forecasts (in orange) diverge quickly from the true diffusion, Ŷ (Ln).
Because of the initially exponential growth structure of the compartmental model, early in the medium run
it overshoots, though the diffusion saturates much earlier and in fact the overall diffusion count in the long
run is underestimated.

That is, in sample, the compartmental model can be made to fit well, but with a lower growth rate for
the number of ever-infected nodes. However, because of the lower implied R0, the compartmental model
dramatically underestimates the total number of expected activations out of sample. Ex-post, a policymaker
could fit this type of model and do extremely well, but it would not be helpful for predicting the future
trajectory.

In Panel B.3b, we turn to diffusion on Gn. The estimated R̂0, derived by taking the average across
simulations of ŝ/r̂, is 1.52 under ŶT (Gn), still below the true R0 of 2.5. We find very similar results as the
case with Ln. The principal difference is that the idiosyncratic links, En, generate a slightly closer forecast
curve to the true trajectory. While the in-sample estimates are quite good, the exponential structure makes
the process run too fast and then fade too early as well, relative to a slower more persistent polynomial
process.

24Note that while Lemma 1 implies that there exists a consistent estimator of R0, the estimator we propose in theory uses
activation-level data. Here, we base our estimate of R̂0 using the aggregate diffusion pattern.
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(a) q = 4 (b) q = 4

(c) q = 2 (d) q = 2

Figure B.3. A comparison of the mean ever activated under the true network SIR model
and the estimated trajectory from the differential equations model. Panel (A) and (B) use
q = 4, while (C) and (D) use q = 2. Panel (A) shows simulations when ŶT (Ln) is used as the
data generating process, while Panel (B) shows when ŶT (Gn) is used. The data cutoff is at
T/4. Before this point, the compartmental SIR model is fit to the data via the generalized
method of moments. After this point, we run the differential equation model forward out
of sample.

When we reduce to q = 2, there is a shift between Ln and Gn, as seen in Panel B.3c. Now, the process
cannot be well approximated by the model. The fitted compartmental SIR looks almost nothing like the
true trajectory: while fitting to data the SIR model makes a complete “S” curve shape, it dramatically
underestimates the total activations. In Panel B.3d, the compartmental SIR model is able to match the data
more closely, because the diffusion moves much more quickly.

For ŶT (Ln), the average (across simulations) root mean squared error (RMSE) is 11.43, while with ŶT (Gn)

it is 11.89. Unsurprisingly, the RMSE under ŶT (Gn) is larger, as the data is inherently noisier. The simulated
trajectories quickly diverge from the data out of sample. In the next T/4 periods, the average RMSE with
ŶT (Ln) is 429.08, while with ŶT (Gn) it is 354.21. This divergence is shown in Figure B.3.

As an additional exercise, we plot the difference between the simulated forward and “true" trajectories
under each data generating process. Results are shown in Figure B.4. We can note that under the true data
generating process of ŶT (Gn), the maximum under and over-estimation by the SIR differential equation
model is smaller than under ŶT (Ln). The additional i.i.d. links increase the degree of the polynomial,
meaning that an exponential SIR model can more closely approximate the process. This effect is much
larger with q = 2 than with q = 4, as this is when the SIR model approximates the process more poorly.
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(a) q = 4 (b) q = 2

Figure B.4. Differences between ŶT (Ln) and ŶT (Gn) and the fitted values from the
differential equation SIR model, for both q = 4 and q = 2.

As discussed above, Figure B.5 demonstrates that the fitted value of R̂0 is typically below the true value
of R0 = 2.5. In particular, with q = 2 and Ln, the estimation procedure dramatically underestimates the
true value of R0. As discussed in the main text, this is because the estimation procedure does not use the
micro-data of exactly which nodes are activated and when, as suggested in Proposition 1.

(a) q = 4 (b) q = 4

(c) q = 2 (d) q = 2

Figure B.5. Distribution of estimated R̂0 across simulations when Ln is based on q = 4.
Note that the distribution of values sits below the true value of R0 = 2.5. Values very close
to zero come from data where the epidemic stops after a very small number of activations.
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In sum, a compartmental SIR model can, in many cases, be fit well looking backwards to a polynomial
diffusion process. This fit is even better the higher the dimension of Ln, as it admits more expansive balls.
But in all cases, the compartmental SIR estimates too rapid a diffusion that saturates and stabilizes too
quickly: historical aggregate fits may be excellent and at the same time may serve as poor forecast tools.

B.6. Extreme Sensitivity with q = 2. We explore an additional set of simulations in the case of q = 2,
this time using a much smaller value of βn = 1

100n . We show average graph statistics in Table B.2. Results
are shown in Figures B.6.

Table B.2. Graph statistics for Ln generated with q = 2 and Gn generated with βn = 1
100n

Statistic Ln Gn
Dimension 2.0 2.0
Diameter 93.0 45.059

Mean Degree 5.826 5.836
Min Degree 2.0 2.0
Max Degree 16.0 16.007

Mean Clustering Coefficient 0.379 0.38
Average Path Length 31.774 18.802

Statistics for Gn are taken as an average over 2,500 draws.

As shown in Figure B.6, despite a much smaller value of βn forecasting issues persist. For sensitive
dependence, j0 is at distance 16 from i0: this much larger distance comes from both the clustered nature of
the graph, and the lack of i.i.d. links to connect disparate locations (due to the low value of βn). Because
there are so few links in En, due to the small value of βn, the local neighborhood containing all j0 is 7.13
percent of the graph, and only 10.90 percent of the neighborhood are candidate j0. With this in mind, it
is not surprising to see the process exhibit severe sensitive dependence on the seed location: at half of the
diameter of Gn (T = 22), the value of J = 0.09 on average, indicating almost totally disjoint diffusion
processes. For forecasting diffusion volume, the minimum value of ŶT (Ln)/ŶT (Gn) is achieved at T = 46,
taking a value of 0.649. This value is still lower than the case with q = 4 and βn = 1

10n (which had a
minimum of 0.780), showing the extreme sensitivity in the lower dimension. Note that over very short time
ranges, the value of the ratio is slightly above 1 – this is a result of finite sample noise, with several diffusion
processes on Ln infecting a large number of nodes quickly, and a few processes on Gn infecting very few
nodes.

The third and fourth panels of Figure B.6 show the compartmental SIR fitting exercise. Here, the
introduction of En has less of an impact, as shown by the relative similarity between the results for Ln and
Gn. This result is not surprising, given the very small value of βn. Recall that we fit the SIR model to
ŶT (Ln) and ŶT (Gn), over the first 46 time steps (corresponding to T/4, equivalent to half of the diameter
of Ln). In the fitting period, using ŶT (Ln), the average RMSE is 62.069, while in the next T/4 periods
it is 1235.168 – a very similar set of values to the q = 2 case in the main text. With ŶT (Gn), the within
sample average RMSE is 101.128, while in the next T/4 periods it is 1242.687. These values are much more
similar to the Ln case than the corresponding values for q = 2 in the main text – this is because there are
many fewer additional links in Gn. Therefore, while the additional links increase the dimensionality of the
diffusion process, the compartmental SIR model still gives a poor approximation. As further evidence, in
both cases, the compartmental model dramatically underestimates the true value of R0 = 2.5: under Ln it
is estimated as 1.10, and under Gn it is estimated as 1.21.
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(a) (b)

(c) (d)

Figure B.6. Results with q = 2 and βn = 1
100n . Panel (A) shows the Jaccard index J ,

while Panel (B) shows the ratio ŶT (Ln)/ŶT (Gn). Panels (C) and (D) show the fitted values
of a SIR differential equation model, fit to ŶT (Ln) and ŶT (Gn). Averages are taken over
2,500 Monte Carlo simulations.

Appendix C. Empirical Example: Location Data from the COVID-19 Epidemic

We give a detailed description of the data processing procedures, along with additional results using a
graph constructed from location data. We build a network using visitor flows based on cell phone location
data, provided by SafeGraph (Kang et al., 2020). Our primary analysis studies the entirety of California
and Nevada, with a small portion of Arizona included. Note that we only include areas in the United States.
The region includes major cities including San Francisco, Los Angeles, and Las Vegas. We work with Census
tracts as the unit of observation, which each contain approximately 4,000 people. Given privacy concerns,
we focus on movement between tracts, rather than tracking individual people. We use tract-to-tract flows
on March 1st, 2020. This date was before the WHO declared COVID-19 a pandemic, and before the United
States government declared a national state of emergency. We construct graphs in the following manner.
Fix a cutoff c. Then we take the following steps.

(1) For each pair of Census tracts a and b, we construct the average flow between tracts by taking the
average of the flow from a to b and the flow from b to a. Call this value fab.

(2) Tracts a and b will be linked in the graph only if fab > c.
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We choose c based on the empirical distribution of fab, the flows between tracts. We refer to this procedure
as “pruning." If the process results in a disconnected graph, we choose the largest connected subgraph. As
before, we set T as twice the diameter of Ln.

C.1. Disease Process. As with the simulated graphs, we fix R0 = 2.5. We then compute pn = R0/d̄,
where d̄ is the average degree in Ln. Note that in this case, the meaning of R0 is substantively different
– because nodes now refer to Census tracts, infecting 2.5 nodes in the disease free state on average means
infected 2.5 tracts on average.

C.2. Errors Induced by Cutoff Choice. We first study errors induced by choosing different cutoffs for
pruning the graph. We construct Gn by setting c = 5, which is at the 91st percentile of the empirical
distribution of tract-to-tract flows. Then, we generate Ln by choosing c = 6. Note that every link in Ln will
be in Gn, meaning that we can construct the implied error graph En.

We conduct the same three analyses that we did with the simulated graph. First, we study a version of
Theorem 1, comparing the overlap between epidemics after perturbing the starting point. Second, we study
a version of Theorem 2, comparing the expected number of infections on each graph. Finally, we consider
the exercise of fitting a SIR differential equation model.

For the sake of brevity, we only note differences unique to this section when compared to the procedures
discussed in Section B. When considering the simulation of Theorem 1, the only change is how i0 is selected
– we set i0 to be the node with the highest degree in Gn. When considering the simulation of Theorem 2,
the key change is that we hold Gn fixed: it is generated once from the data. When we take expectations,
they are taken only over the disease process only. Otherwise, the process is identical. The process of fitting
a differential equation SIR model is exactly as before. In addition, we conduct simulations with En taken
to be an Erdos-Renyi random graph, rather than via the pruning procedure. In the main text, we set βn so
that the i.i.d. errors generate the same expected volume of links as the pruning procedure. As an additional
set of results, we set βn = 1

10n , to compare with the Monte Carlo simulations. Summary statistics of the
resulting graphs are shown in Table C.1.

Table C.1. Graph statistics for Ln and both hypothetical Gns constructed from California,
Nevada, and Arizona Census tract flow data

Statistic Ln G92
n Gβn

Error Type — Pruned IID
Diameter 21.0 15.0 7.687
Mean Degree 12.962 15.486 16.172
Min Degree 1.0 1.0 1.839
Max Degree 298.0 329.0 301.148
Mean Clustering Coefficient 0.389 0.393 0.234
Average Path Length 7.253 5.866 4.03
Statistics for Gβn with i.i.d. errors are averaged over 2,500 draws.

C.3. Additional Results. We again estimate the compartmental SIR model using the simulated epidemics
above. This process is identical to the procedure conducted in Section 6. One pattern of note is that the
model fit to ŶT (Gn) generated from the pruning procedure underestimates the average number of infections,
while the model fit to ŶT (Ln) overestimates.
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(a) Pruned (b) Pruned

(c) I.I.D. (d) I.I.D.

Figure C.1. A comparison of the mean ever infected under the true network SIR model
and the estimated trajectory from the differential equations model. Here, Ln is generated
from location flow data in California, Nevada, and a portion of Arizona. Panel (A) and (B)
use the pruning procedure, while (C) and (D) have i.i.d. links. Panel (A) shows simulations
when ŶT (Ln) is used as the data generating process, while Panel (B) shows when ŶT (Gn) is
used. The data cutoff is at T/4. Before this point, the SIR model is fit to the data via the
generalized method of moments. After this point, we run the differential equation model
forward to see how it performs out of sample.

In the estimation period before T/4, the RMSE for ŶT (Ln) is 202.98, while in the next T/4 periods it is
1953.41. When fit to ŶT (G93

n ), the RMSE in the first T/4 periods is 452.09, while in the next T/4 periods it
is 1320.60. Notably, the model has a much better fit out of sample for G93

n . For the i.i.d. errors on Gβn, the
results are similar. In the estimation period, the RMSE fitted to ŶT (Ln) is 200.541, while in the next T/4
periods it is 1944.63. When fit to ŶT (Gn), the RMSE in the first T/4 periods is 700.93, while in the next
T/4 periods it is 1095.14.

We then show a set of additional figures, corresponding to the simulations from the main text. We
first disaggregate the simulated diffusion processes into a standard SIR framework, as shown in Figure C.2.
Second, we show the distribution of estimated R̂0 across simulations in Figure C.3. Figure C.2 demonstrates
that with i.i.d. errors, the infection profile is relatively sharp, as the epidemic quickly expands to cover the
whole graph during the intermediate range of T .

C.4. Lower Rates of I.I.D. Errors. To make a more direct comparison to the Monte Carlo simulations,
we repeat the simulation exercises using En generated i.i.d. with βn = 1

10n . Graph statistics are shown in
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(a) (b) Pruned

(c) I.I.D.

Figure C.2. Trajectories of ŶT (Ln) and ŶT (Gn) disaggregated into the standard SIR
curves for Ln and Gn for each scenario. Note that the Ln specifications are identical,
as it is exactly the same graph.

Table C.2, again for Ln and the average statistics for Gn over 2,500 draws of En. Compared to Gn in the
main text (in Table C.1), note that the change in degree, clustering, and average path length are all much
smaller, as En is much more sparse in this case.

Table C.2. Average graph statistics with i.i.d. errors in the travel data for California,
Nevada, and a small portion of Arizona

Statistic Ln Gn
Diameter 21.0 16.874

Mean Degree 12.962 13.062
Min Degree 1.0 1.0
Max Degree 298.0 298.106

Mean Clustering Coefficient 0.388 0.38
Average Path Length 7.295 6.116

Gn is generated from Ln using i.i.d. additional links, which occur with βn = 1
10n

.

Results are shown in Figure C.4. We take averages over 2,500 simulations. The top left panel shows
the simulation of Theorem 1. As in the main text, we choose the local neighborhood containing all j0
conservatively: we chose the set to be all nodes within distance 2 of i0. The distance from i0 to j0 is
therefore 2, and the neighborhood that contains all possible j0 contains 0.80 percent of the graph. Of the
neighborhood, 89.55 percent of the nodes are candidates for j0. Halfway to the diameter of Gn, the value
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(a) (b) Pruned

(c) I.I.D.

Figure C.3. The distribution of values of R̂0 estimated when fitting the compartmental
SIR model to the COIVD-19 travel data.

of the average Jaccard index is 0.24, indicating largely distinct epidemics. The top right panel shows the
simulation of Theorem 2. Note that in this case, the minimum ratio of ŶT (Ln)/ŶT (Gn) is achieved at T = 18

and takes the value 0.686. This value is much larger than the values from the main text with either the
pruned or i.i.d. errors, and comparable to the values with the same level of βn and graph dimension q = 4

in the Monte Carlo simulations.
The third and fourth panels of Figure C.4 show the fitted compartmental SIR models, relative to ŶT (Ln)

and ŶT (Gn). As before, the compartmental model underestimates the true R0 = 2.5: under ŶT (Ln), it
estimates a value of 1.40, and under ŶT (Gn) estimates a value of 1.49. In the first T/4 periods, in sample,
the average RMSE under ŶT (Ln) is 198.96. In the next T/4 periods, it is 1,966.58. Under ŶT (Gn), in
sample, the average RMSE is 222.11, whereas in the next T/4 periods it is 1389.65. Similar to the Monte
Carlo exercise, we see that the additional links in En help increase the dimensionality of the epidemic, leading
to a better fit with the exponential compartmental model.

Appendix D. Empirical Example: Diffusion in Mobile Phone Marketing

We use data from Banerjee et al. (2019) as an additional empirical example of our diffusion results. We
build 69 separate village graphs, by composing networks based on survey data from Karnataka, India. We
have a number of directed networks:

(1) Relative
(2) Give advice: does the household i give advice to household j
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(a) (b)

(c) (d)

Figure C.4. Results using the COVID-19 travel data, with Gn using En generated i.i.d.
with βn = 1

10n . Panel (A) shows the ratio ŶT (Ln)/ŶT (Gn), while Panel (B) shows the
Jaccard index J . Panels (C) and (D) show the fitted values of a SIR differential equation
model, fit to ŶT (Ln) and ŶT (Gn). Averages are taken over 2,500 Monte Carlo simulations.

(3) Seek advice: does household i get advice from household j
(4) Go to visit: does household i visit household j in free time
(5) Come to visit: does household i come visit household j in free time
(6) Borrow: does i borrow kerosene or rice from household j
(7) Lend: does i lend kerosene or rice to household j

To construct a set of undirected networks for each village, we take the union of these seven networks. Links
are assumed to be undirected, and the network is made symmetric. This network data comes from a sequence
of studies conducted in Karnataka, India. We use the 2012 data in our setting, the more recent of two waves
of data collection. Graph statistics are shown in Table D.1.

Appendix E. Empirical Example: Peer Effects in Insurance

We use data from Cai et al. (2015) to investigate an example with peer effects in a diffusion setting. In
order to encourage weather insurance, a valuable product with low takeup in rural China, the researchers
conducted two waves of information sessions.

To construct network data, we use the list of directed links given in their data along with additional survey
data. We drop some households who are listed in the network data but not in the additional survey data –
we assume that this is a result of attrition between the surveys. We then transform the directed network in
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Table D.1. Average village graph information from Banerjee et al. (2019).

Statistic Ln Gn
Nodes 196.072 196.072

Diameter 7.087 6.787
Mean Degree 6.541 6.849
Min Degree 1.0 1.004
Max Degree 25.71 26.219

Mean Clustering Coefficient 0.228 0.199
Average Path Length 3.303 3.168

For Ln, averages are taken across the 69 villages in our sample. For Gn, averages are taken across the 69 villages and 2,500
draws of En, where En is generated with βn = 1

2nv
in each village separately, where nv is the number of households in the

village.

each village into an undirected network: if household i lists household j as a friend, or vice versa, we link i
to j.

We use the same definition of treatment as in Cai et al. (2015). A household is considered to be treated
if they participate in an intensive information session in the first wave of the experiment. We then compute
diffusion exposure using these households as seeds. When we estimate the effect of diffusion exposure, we
include only households that did not participate in the first wave of the information sessions. This procedure
is consistent with the prior research.

In addition, we include a number of controls to be in line with the original paper. We control for the head
of household gender, age, education, and area of rice production. In addition, following the approach in Cai
et al. (2015), we control for degree to address potential concerns about selection on household sociability.
Finally, we include village fixed effects. Tables E.1 and E.2 report graph summary statistics for all values of
k for the Monte Carlo simulations conducted in the main text.

Table E.1. Average graph statistics from Cai et al. (2015)

Graph Statistic Value
Nodes 104.30
Min Degree 0.40
Max Degree 15.79
Mean Degree 6.51
Components 5.60
Average Path Length 3.59
Diameter 8.06
Local Clustering 0.30
Exposure 0.99

Averages are taken over the 47 villages in the data. When there are multiple components, paths of infinite length (when nodes
are disconnected from one another) are ignored. Mean exposure is computed before standardizing to have mean zero and

standard deviation one, as we do in the regressions.

Appendix F. Additional Theoretical Results

F.1. Decaying Diffusion in the Polynomial Case. In what follows, we set δn = 1 for ease of exposition.
Similar results go through with vanishing δn at a sufficiently slow rate and adjustments to the bounds on
timing.
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Table E.2. Graph statistics for the average graph Ln generated by dropping links with
i.i.d. probability βn = 1

knv
in each village

k MinDeg MaxDeg MeanDeg Comp. PathLen. Diam. Clus. Exposure
- 0.38 13.32 5.60 5.60 3.59 8.06 0.30 1.10

15.00 0.37 13.19 5.54 5.63 3.61 8.10 0.29 1.10
14.00 0.37 13.19 5.53 5.64 3.61 8.10 0.29 1.10
13.00 0.37 13.17 5.53 5.64 3.61 8.10 0.29 1.10
12.00 0.37 13.16 5.52 5.64 3.61 8.11 0.29 1.10
11.00 0.37 13.15 5.51 5.65 3.61 8.11 0.29 1.10
10.00 0.37 13.13 5.51 5.65 3.62 8.12 0.29 1.10
9.00 0.37 13.11 5.49 5.66 3.62 8.12 0.29 1.10
8.00 0.36 13.09 5.48 5.67 3.62 8.13 0.29 1.10
7.00 0.36 13.05 5.46 5.68 3.62 8.14 0.29 1.10
6.00 0.36 13.01 5.44 5.69 3.63 8.15 0.29 1.09
5.00 0.35 12.95 5.40 5.71 3.64 8.17 0.28 1.09

“Comp." stands for the number of components. “PathLen.” stands for path length. “Diam.” stands for diameter. “Clus.”
stands for the clustering coefficient.

Assumption F.1 (Polynomial Diffusion Process). For some constant q > 1 and all discrete-time t, Et =

Θ(tq+1) and St = Et − Et−1 = Θ(tq). Furthermore, let pn(T ) =
pn,0
Tλ

for some constant 0 < λ < q and

pn,0 ∈
((

1
logn

) q
2q+2

, 1

]
.

We assume that diffusion decays at a polynomial rate over time, governed by the constant λ. It follows
that we only have expected diffusion through links in En if λ < q. In the case where pn(T ) were to decay
exponentially quickly, it would then follow we still would not have expected diffusion through En. With fast
decay on pn(T ), the missing links do not have a large impact because the diffusion process just dies before
hitting regions that cause lots of damage.

We note that the graph classes that are allowed under the homogenous pn are still valid here, with
sufficiently slow decay of pn. For example, again consider a latent space network where nodes form links
locally in a Euclidean space with dimension q. Since volumes in Euclidean space expand at a polynomial
rate and for λ < q, this ensures that Assumption F.1 will be satisfied.

Assumption F.2 (Forecast Period). We impose that the sequence Tn has for each n, Tn ∈ [Tn, Tn] where
the following holds:

(1) Tn = min

{
n

1
q+1 ,

(
n
pn,0

) 1
q−λ
}

(2) Tn = (pn,0 log n)
1

q+λ+2 .

Again, the assumption is very close to that of the main text, adapting the constants to deal with the
decaying diffusion rates. We can note that the time frame considered will generally start earlier, but also
potentially end earlier.

Assumption F.3. βn ∈
(

1
npn,0T q−λ

, 1
n

)
.

Compared to the homogeneous diffusion rate case where we assume βn ∈
(

1
npn,0T q

, 1
n

)
, with decaying

pn(T ) we impose a larger missing link rate. Under these conditions, a similar result to Theorem 2 holds.

Theorem F.1. Under Assumptions F.1, F.2, and F.3, as n→∞, ŶT (Ln)

ŶT (Gn)
→ 0.
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This result forms a direct analogue of Theorem 2 with a decaying diffusion rate. The proof is omitted as
it proceeds in an identical manner.
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