

² Supplementary Information for

Interacting Policies in Containing a Disease

- Arun G. Chandrasekhar, Paul Goldsmith-Pinkham, Matthew O. Jackson, Samuel Thau
- 5 Matthew O. Jackson

1

6 E-mail: jacksonm@stanford.edu

This PDF file includes:

- 8 Supplementary text
- 9 SI References

Supporting Information Text

11 1. Theorem Details and Proofs

12 A. Model and Definitions.

People and Interactions. There are n > 1 nodes (individuals) in an unweighted, and possibly directed, network.

We study the course of a disease through the network. Time is discrete, with periods indexed by $t \in \mathbb{N}$. An initial infected node, indexed by $i_0 \in V$, is the only node infected at time 0. We call this node the *seed*.

¹⁸ We track the network via neighborhoods that expand outwards via (directed) paths from i_0 . Let ¹⁹ N_k be all the nodes who are at (directed) distance k from node i_0 . Let n_k denote the cardinality of ²⁰ N_k .

For any node in $j \in N_{k'}$, for k' < k, let n^j be the number of its direct descendants and n_k^j be the number of its (possibly indirect) descendants in N_k that are reached by never passing beyond distance k from i_0 .

Unweighted network models are admitted here. Additionally, the results below extend to any
weighted model in which weights are bounded above and below (e.g., probabilities of interaction).
Note also, that the network can be directed or undirected.

The infection process proceeds as follows. In every time period $t \in \{1, 2, ...\}$, an infected node *i* transmits the disease to each of *i*'s neighbors independently with probability *p*. A newly infected node is infectious for $\theta \ge 1$ periods after which the node recovers and is never again infectious. The model can easily be extended to accommodate renewed susceptibility.

There may be a *delay* in the ability to detect the disease. The number of periods of delay is given by τ with $0 \le \tau \le \theta$. Delay is a general term that can capture many things. For example, it can correspond to (a) asymptomatic infectiousness, (b) a delay in accessing health care given the onset of an infectious period, (c) any delay in the administration of testing, and so on.

In the first period of an infected node's infectious period – after delay (τ) – there is a probability α that the policymaker detects it as being infected. So, potential detection happens exactly once during the first period in which the node can be detected. Detection is independently and identically distributed. Our results are easily extended to have a random period for detection after the delay. Finally, the policymaker may face some error in their knowledge of the network. This can come

from their limited enforcement capacity, random noise in data collected to estimate interaction networks, or from network model misspecification. If there is error, we will track a share ϵ of nodes that are within a k-neighborhood of the seed but are estimated by the policymaker to be outside the k neighborhood

43 the k-neighborhood.

Regional Quarantine Policy. Let a regional policy of distance k and threshold x be such that once there are at least x infections (other than the seed) detected within distance k from the initial seed, then all nodes within distance k + 1 of i_0 are quarantined for at least θ periods. A quarantine implies all connections between nodes are severed to avoid any further transmission, the infection lasts its duration θ and dies out.

Implicit in this definition is that a quarantine is not instantaneous, but that infected people could have infected their neighbors before being shut down, which is why the nodes at distance k + 1 are quarantined. All the results below extend if we assume that it is instantaneous, but with quarantines moved back one step and path lengths in definitions correspondingly adjusted.

2 of 22 Arun G. Chandrasekhar, Paul Goldsmith-Pinkham, Matthew O. Jackson, Samuel Thau

We have assumed the policymaker knows the "seed," for simplicity - but this knowledge may take some time in reality. This provides an advantage to the policymaker, but we see substantial containment failures despite this advantage.

Growth Balance. In order to conduct asymptotic analysis, a useful device to study the probabilities of events in question in large networks, we study a sequence of networks G(n) with $n \to \infty$ and an associated sequence of parameters $(\alpha, p, \tau, \theta, k) = (\alpha(n), p(n), \tau(n), \theta(n), k(n))$.

⁵⁹ Consider a network and a distance k from the initially infected node i_0 . A path of potential ⁶⁰ infection to k + 2 is a sequence of nodes $i_0, i_1, \ldots i_{\ell}$ with $i_{\ell} \in N_{k+1}, i_{j+1}$ being a direct descendant of ⁶¹ i_j for each $j \in \{0, \ldots, \ell - 1\}$, and for which i_{ℓ} has a descendant in N_{k+2} .

⁶² Consider a sequence of networks and k(n)s. We say that there are bounded paths of potential ⁶³ infection from $i_0(n)$ to k(n)+2 if there exists some finite M and for each n there is a path of potential ⁶⁴ infection to k(n)+2, $i_0(n), i_1, \ldots i_{\ell}$ of length less than M, with $n^{i_j} < M$ for every $j \in \{0, \ldots, \ell-2\}$.

⁶⁵ We say that a sequence of networks is growth-balanced relative to some k(n) (and sequence of ⁶⁶ $i_0(n)$) if there are no bounded paths of potential infection to k(n) + 2. This is equivalent to stating ⁶⁷ that there exists a sequence $m(n) \to \infty$ such that each path of potential infection from $i_0(n)$ to ⁶⁸ k(n) + 2 is either of length at least m(n) or has some node with degree at least m(n).

If k(n) grows without bound, then the condition is satisfied trivially, so the bounded case is the one of interest; it is also the one of practical interest given the small diameter of real-world networks. Also note that the condition is stated with respect to a sequence of seed nodes. The results extend directly if one wants things to hold with respect to sets of seeds by requiring that the conditions hold for sequences of sets of seeds.

Growth balance is essentially a condition that requires a minimum bound of expansion along all potential paths of infection to escape a regional quarantine from some initial infection. The intuition behind the condition is clear: to ensure detection of an outbreak before it reaches a distance k + 1from the seed, many of the nodes within distance k must be exposed to the disease by the time it reaches distance k. What is ruled out is a relatively short path that gets directly to that distance without having many nodes be exposed along that path.^{*}

⁸⁰ Figure S1 presents an illustration of a network that is not growth-balanced.

81 B. Results.

⁸² A Benchmark: No Delay in Detection; Perfect Information and Enforcement. We begin with a benchmark ⁸³ case in which there is no delay in detection ($\tau(n) = 0$) and the policymaker can completely enforce ⁸⁴ a quarantine at some distance k(n) + 1.[†]

⁸⁵ We allow the size of the quarantine region k to depend on n in any way, as the theorem still ⁸⁶ applies. We work with an arbitrary but fixed infection threshold x. What is important is that x not ⁸⁷ grow too rapidly, as otherwise the likelihood of observing x infections within proximity k to the seed ⁸⁸ is extremely low.[‡]

THEOREM 1. Consider any sequence of networks and associated k(n) < K(n) - 1 where K(n) is the maximum k(n) for which $n_k > 0$; such that each node in $N_{k(n)+1}$ has at least one descendent at distance k(n) + 2, and let x be any fixed positive integer. Let the sequence of associated diseases have

^{*}This is very different from conditions that concern long paths within short distances, such as (1), as ours is ruling out short paths with low expansion.

[†]Note that this requires knowledge of the neighborhood structure around the seed node, but no other knowledge of the network by a policymaker.

[‡]The theorem extends to allow x = x(n) to grow with n, provided the growth is sufficiently slow. Then that growth balance condition becomes more complicated, as the M = M(n) in the definition adjusts with the rate of growth of x.

[§]Otherwise, it is actually a global policy.

⁹² $\alpha(n)$ and p(n) bounded away from 0 and 1,[¶] no delay in detection, and any $\theta(n) \ge 1$. A regional ⁹³ quarantining policy of distance k(n) and threshold x halts all infections past distance k(n) + 1 with a

probability tending to 1 if and only if the sequence is growth-balanced with respect to k(n).

Note that the growth balance condition implies that the number of nodes within distance k(n)from i_0 must grow without bound. Theorem 1 thus implies that in order for a regional policy to work, the region size must grow without bound, and also must satisfy a particular balance condition. (Rates at which this growth must occur as a function of k and n, can be deduced from the relevant

⁹⁹ infection probabilities and network structure.)

Proof of Theorem 1. To prove the first part, note that if the infection never reaches distance k(n)100 then the result holds directly since it can then not go beyond k(n) + 1. We show that if the sequence 101 of networks is growth-balanced relative to k(n), then conditional upon an infection reaching level 102 k(n) with the possibility of reaching k(n) + 2 within two periods, the probability that it infects more 103 than x nodes within distance k(n) before any nodes beyond k(n) tends to 1. Suppose that infection 104 reaches some node at distance k(n) that can reach a node in N_{k+1} . Consider the corresponding 105 sequence of paths of infected nodes $i_0, i_1, \ldots i_\ell$ with $i_\ell \in N_{k+1}, i_{j+1}$ being a direct descendant of 106 i_i for each $j \in \{0, \ldots, \ell - 1\}$, and note that by assumption i_ℓ has a descendant in N_{k+2} . By the 107 growth balance condition, for any M, there is a large enough n for which either the length of the 108 path is longer than M or else there is at least one i_j with $j \leq \ell - 2$ along the path that has more 109 than M descendants. In the latter case, the probability that i_i has more than x descendants who 110 become infected and are detected is at least $1 - F_{M,m}(x)$ where $F_{M,m}$ is the binomial distribution 111 with M draws each with probability m, where $p(n)\alpha(n) > m$ for some fixed m. Given that x and m 112 are fixed, this tends to probability 1 as M grows. In the former case, the sequence exceeds length 113 M, all of which are infected and so given that $\alpha(n)$ is bounded below, the probability that at least 114 x of them are detected goes to 1 as M grows. In both cases, as n grows, the minimal M across such 115 paths of potential infection to k(n) + 1 grows without bound, and so the probability that there are 116 at least x infections that are detected by the time that $i_{\ell-1}$ is reached tends to 1 as n grows. 117

To prove the converse, suppose that the network is not growth-balanced. Consider a sequence of 118 bounded paths of potential infection to k(n) + 2, with associated sequences of nodes $i_0, i_1, \ldots i_\ell$ of 119 length less than M with $i_{\ell} \in N_{k+1}$, i_{j+1} being a direct descendant of i_j for each $j \in \{0, \ldots, \ell-1\}$, 120 with $n^j < M$ for every $j \in \{0, \ldots, \ell - 2\}$, and for which i_ℓ has a descendant in N_{k+2} . The probability 121 that each of the nodes $i_1, \ldots i_{\ell-2}$ becomes infected and no other nodes are infected within distance 122 k(n) - 1, and that all infected nodes are undetected is at least $(p(n)(1 - \alpha(n))(1 - p(n))^M)^M$. This 123 is fixed and so bounded away from 0. This implies that probability that the infection gets to nodes 124 at distance k(n), and $i_{\ell-1}$ in particular, without any detections is bounded below. Thus, there is a 125 probability bounded below of reaching i_{ℓ} before any detections, and then by the time the quarantine 126 is enacted, there is at least a p(n) times this probability that it escapes past N_{k+1} , which is thus 127 also bounded away from 0. 128

We note that Theorem 1 admits essentially all sequences of (unweighted) networks. Thus, for every type of network, one can determine whether a regional policy of some (k(n), x) will succeed or fail. The only thing that one needs to check is growth balance. If it is satisfied, a regional policy works, and otherwise it will fail with nontrivial probability.

This has implications for some prominent random network models. Consider a randomly chosen sequence of seeds and networks from the associated networks:

4 of 22 Arun G. Chandrasekhar, Paul Goldsmith-Pinkham, Matthew O. Jackson, Samuel Thau

 $[\]P$ The cases of p(n) or $\alpha(n)$ equal to 1 are degenerate.

- 135 1. For a sequence of stochastic block models in which all nodes have expected degree $d(n) > \log(n)$ 136 so that the network is path connected (with Erdos-Renyi as a special case),^{||} a regional policy 137 with a bounded k(n) has a probability going to 1 of halting the disease on the randomly 138 realized network if and only if the seed node's expected out degree d(n) > 1 is such that 139 $d(n)^{k(n)} \to \infty$.
- 2. For a regular expander graph with outdegree d(n) > 1, a regional policy works if and only if the expansion rate $d(n)^{k(n)} \to \infty$.
- 3. For a regular lattice of degree d(n) > 1, a regional policy works if and only if $d(n)^{k(n)} \to \infty$.
- 4. For a rewired lattice with d(n) > 1 for all nodes and with a fraction links that are randomly rewired, a regional policy with a bounded k(n) has a probability going to 1 of halting the disease on the randomly realized network if and only if $d(n)^{k(n)} \to \infty$.
- 5. For a sequence of random networks with a scale-free degree distribution with average degree $d(n) > \log(n)$, a regional policy works (with probability 1) if and only if $k(n) \to \infty$.

Thus, whether a regional policy works in almost any network model requires that either the degree of almost all nodes grows without bound, or else the size of the quarantine grows without bound. For a scale free distribution, there is always a nontrivial probability on small degrees, and hence in order for a regional policy to work, the size of the neighborhood must grow without bound.

In practice, even very sparse networks will have a large $d(n)^{k(n)}$ (e.g., if people have hundreds of 152 contacts, 100^3 is already a million and even with a very low $\alpha(n)$ many infections will be detected 153 within a few steps of the initial node).** What the growth balance condition rules out is that some 154 nontrivial part of the network have neighborhoods with many fewer contacts - so there cannot be 155 people who have just a few contacts, since that will allow for a nontrivial probability of undetected 156 escape (e.g., $2^3 = 8$ and so with only 8 infections, it is possible that none are detected and the disease 157 escapes beyond 3 steps). As many real-world network structures have substantial heterogeneity, 158 with some people having very low numbers of interactions, such an escape becomes possible even 159 under idealized assumptions of no delay in detection and no leakage (2-6). 160

Delay in Detection. The detection delay, $\tau(n)$, is distributed over the support $\{1, \ldots, \tau^{\max}(n)\}$. This includes degenerate distributions with $\tau^{\max}(n)$ being the maximal value of the support with positive mass. The policymaker may or may not know $\tau^{\max}(n)$ and we study both cases. The latter is important as in practice we estimate delay periods so there is bound to be uncertainty. When $\tau(n)$ is known, we can simply say $\tau(n) = \tau^{\max}(n)$.

Let a regional policy with trigger k(n), threshold x, and buffer h(n) be such that once there are at least x infections detected within distance k(n) + h(n) from the initial seed, then all nodes within distance k(n) + h(n) + 1 of i_0 are quarantined/locked down for at least $\theta(n)$ periods.

There are two differences between this definition of regional policy from the one considered before. First, it is triggered by infections within distance k(n) + h(n) (not within distance k(n)), and it also has a buffer in how far the quarantine extends beyond the k(n)-th neighborhood.

We extend the definition of growth balance to account for buffers.

Consider a network and a distance k(n) from the initially infected node i_0 and an $h(n) \ge 1$. A path of potential infection to k(n) + h(n) + 2 is a sequence of nodes $i_0, i_1, \ldots i_{\ell}$ with $i_{\ell} \in N_{k(n)+h(n)+1}$, i_{j+1} being a direct descendant of i_j for each $j \in \{0, \ldots, \ell-1\}$.

Consider a sequence of block models such that the ratio of expected out degree of a node in one neighborhood compared to another in some other block cannot grow without bound.

Consider a sequence of networks, n, and associated k(n), h(n). We say that there are bounded paths of potential infection to k(n) + h(n) + 2 if there exists some finite M and for each n there is a path of potential infection to k(n) + h(n) + 2, $i_0, i_1, \ldots i_\ell$ of length less than M, with $n^j < M$ for every $j \in \{0, \ldots, \ell - h(n) - 2\}$. We say that a sequence of networks is growth-balanced relative to some k(n) and buffers h(n) if there are no bounded paths of potential infection to k(n) + h(n) + 2.

THEOREM 2. Consider a sequence of diseases that have $\alpha(n)$ and p(n) bounded away from 0 and 181 1, $\theta(n) \geq 1$, and have a detection delay distributed over some set $\{1, \ldots, \tau^{\max}(n)\}$ with $\tau^{\max} > 1$ 182 (with probability on $\tau^{\max}(n)$ bounded away from 0).^{††} Consider any sequence of networks and 183 $k(n) < K(n) - \tau^{\max}(n) - 1$ where K(n) is the maximum k(n) for which $n_k > 0$, such that each 184 node in $N_{k'}$ for k(n)' > k(n) has at least one descendent at distance k(n)' + 1, and let x be any 185 fixed positive integer. A regional policy with trigger k(n), threshold x, and buffer $\tau^{\max}(n)$ halts all 186 infections past distance $k(n) + \tau^{\max}(n) + 1$ with a probability tending to 1 if and only if the sequence 187 is growth-balanced with respect to k(n). 188

The Proof of Theorem 2 is a straightforward extension of the previous proof and so it is omitted. This result shows several things. First, if the detection delay is small relative to the diameter of the graph, one can use a regional quarantine policy – adjusted for the detection delay – along the lines of that from Theorem 1 and ensure no further spread. This is true even if the period is stochastic as long as the upper bound is known to be small.

Second, in contrast, if the detection delay is large compared to the diameter of the graph, then a regional policy is insufficient. By the time infections are observed, it is too late to quarantine a subset of the graph. This condition will tend to bind in the case of real world networks, as they exhibit small world properties and have small diameters (7, 8). As a result, even short detection delays may correspond to rapidly moving wavefronts that spread undetected.

Leakage in the Quarantine. Next we turn to the case of in which there is some leakage in the quarantine, which may happen for a variety of reasons. First, the policymaker may have measurement error in knowledge of the network structure and thus who should be quarantined. Second, and distinctly, lockdowns are imperfect, and some transmission still happens. Third, the network may cross jurisdictional borders and some nodes within distance k(n) of i_0 may be outside of the policymaker's jurisdiction.

To keep the analysis uncluttered, we assume no detection delay, but the arguments extend directly to the delay case with the appropriate buffer.

THEOREM 3. Consider any sequence of networks. Let the sequence of associated diseases have $\alpha(n)$ and p(n) bounded away from 0 and 1, and be such that $\theta(n) \ge 1$, with no detection delay. Consider any k(n) < K(n) - 1 where K is the maximum k(n) for which $n_k > 0$, and suppose that each node in $N_{k(n)}$ has at least one descendent at distance k(n) + 1, and let x be any positive integer.

Suppose that a random share of ε_n of nodes within distance k(n) of i_0 are not included in a regional quarantine policy and are connected to nodes of distance greater than k(n) + 1 – because of a lack of jurisdiction, misclassification by a policymaker, or lack of complete control over people's behaviors.^{‡‡} Then:

1. If $\varepsilon_n = o((\sum_{k(n)' \le k(n)} n_{k'})^{-1})$ and the network is growth-balanced, then a regional policy of distance k(n) and threshold x halts all infections past distance k(n) + 1 with a probability tending to 1.

^{††}A special case is in which $au^{\max}(n)$ is known.

¹¹ The misclassification can be that if some node within distance k(n) is controlled by the quarantine, but connects to nodes that are not included and were thought to be of greater distance, but then allow the disease to escape beyond the quarantine.

218 2. If $\varepsilon_n \ge \min[1/x, \eta]$ for all n for some $\eta > 0$ or the network is not growth-balanced, then a 219 regional policy of distance k(n) and threshold x fails to halt all infections past the regional 220 quarantine with a probability bounded away from 0.

Proof of Theorem 3. Part 1 follows from the fact that if $\varepsilon_n = o((\sum_{k(n)' \le k(n)} n_{k'})^{-1})$ then the probability of having all nodes in N_k correctly identified as being in N_k tends to 1, and then Theorem 1 can be applied.

For Part 2, suppose that some x infections are detected. The probability that at least one of them is misclassified is at least $1 - (1 - \varepsilon_n)^x$. Given that $\varepsilon_n \ge \min[1/x, \eta]$ for some $\eta > 0$, it follows that $(1 - \varepsilon_n)^x$ is bounded away from 1. There is a probability bounded away from 0 that at least one of the infected nodes is misclassified, and not subject to the quarantine, and connected to a node outside of distance k(n) + 1.

The theorem implies that the effectiveness of a regional policy is sensitive to any small fixed ε amount of leakage.

231 2. Simulation Details

To illustrate the processes described in the main text, we run several simulations. First, we construct a large network with many jurisdictions. We directly study the content of the theorems with several versions of (k, x) quarantines with a SIR infection process on a network. We use the same process and network to show the issues with jurisdictional policies, studying reactive and proactive policies.

236 A. Network Model. We model the network structure as follows.

- 1. There are L locations distributed uniformly at random on the unit sphere. Each location has a population of m nodes with a total of n = mL nodes in the network.
- 239 2. The linking rates across locations are given as in a spatial model (2, 9). The probability of 240 nodes $i \in \ell$ and $j \in \ell'$ for locations $\ell \neq \ell'$ linking depends only on the locations of the two 241 nodes and declines in distance:

$$q_{\ell,\ell'} = \exp(a + b \cdot \operatorname{dist}(\ell, \ell'))$$

where dist (ℓ, ℓ') is the distance between the two locations on the sphere and a, b < 0.

Every interaction between every pair of nodes is drawn independently from the observed spatial distribution, with distances measured along the surface of the unit sphere.

3. The linking patterns within a location are given as in a mixture of random geometric (RGG)
(3) and Erdos-Renyi (ER) random graphs (10). Specifically, as spheres are locally Euclidean,
we model nodes in a location (e.g., in a city) as residing in a square in the tangent space to
the location. The probability that two nodes within a location link declines in their distance
in this square.

We set d_{RGG} as the desired degree from the RGG. Nodes are uniformly distributed on the unit square $[0, 1]^2$, and links are formed between nodes within radius r_{ℓ} (3). Let d_{ℓ} be the desired average degree for all nodes within location ℓ with m_{ℓ} as the population at location ℓ , which we take as equal for all locations in our exercises. We define

$$\pi = \frac{d_\ell - d_{RGG}}{m_\ell}$$

Arun G. Chandrasekhar, Paul Goldsmith-Pinkham, Matthew O. Jackson, Samuel Thau 7 of 22

250 251

which is the probability with which remaining links within location are drawn (i.i.d.). To obtain the desired degree we set

$$r_{\ell} = \sqrt{\frac{d_{RGG}}{m_{\ell}\pi}}.$$

- 4. Next, we uniformly add links to create a small world effect, with identical and independently distributed probability $s = \frac{1}{cn}$, where c is an arbitrary constant and n is the total number of nodes in the network (11).
- 5. Finally, we designate a single location as a "hub," to emulate the idea that certain metro areas may have more connections to *all* other regions. To do so, we select a hub uniformly at random and add links independently and identically distributed with probability h from the hub location to every other location.
- 6. To avoid the possibility of multiple links between the same two nodes, we remove any duplicate
 links.

We first take L = 40 and m = 3500 for all locations. We set a = -4 and b = -15. Next, we calibrate the network to data by setting $d_{\ell} = 15.5$, and $d_{RGG} = 13.5$ for all locations. Next, we set c = 2. Finally, we set $h = 2.85 \times 10^{-6}$. This process results in a graph that very roughly emulates the connectivity of real world networks in the United States and India (12–15). This includes data from India during the COVID-19 lockdowns about interactions within six feet, meaning that it is conservative (15).

We fix this network to use in all versions of the simulations. The network we generate is sparse, clustered, and has small average distances, as demonstrated by information detailed in Table S1.

Finally, we recalculate the connection probability matrix between locations to reflect realized rates of connection across regions, denoted by q. The entry that denotes the probability of linking between locations ℓ and ℓ' is $q_{\ell,\ell'}$.

B. Disease Process. We set parameters as follows: the duration of infection is θ , detection delay (when incorporated) is τ , and set quarantine thresholds x depending on the simulation.

274 We set transmission probability p as

$$p = 1 - \left(1 - \frac{R_0}{\bar{d}}\right)^{\frac{1}{\theta}}$$

where \bar{d} is the mean degree. We take $R_0 = 3.5$, based on estimates of COVID-19 (16).

Following estimates from the literature (5-15%), we set $\alpha = 0.1$ (17, 18). In the simulations, each node is either detected or not during the first period in which it can be detected. Nodes that are detected are classified as such until recovery. Nodes that are undetected remain undetected (and so the α probability of detection is realized in the $\tau + 1$ st period, and only in that period).

As outlined in the main text, we begin by using $\theta = 5$ and $\tau = 3$ (17–20).

C. Simulation Progression. Each time period in the simulation progresses in four parts, which
 happen sequentially. The simulations run as follows:

8 of 22 Arun G. Chandrasekhar, Paul Goldsmith-Pinkham, Matthew O. Jackson, Samuel Thau

- The policymakers see the newly detected infections from the previous period, and update their
 estimates of current infections (in all jurisdictions if proactive), and then determine whether
 a quarantine is necessary in their own jurisdiction in the next period (if there is not one
 already in place). This quarantine decision is done based on estimated infections for proactive
 jurisdictions, and internally observed infections for reactive jurisdictions.
- 288 2. The disease progresses for a period. This includes new infections and recoveries.
- 3. Infected nodes that have just finished their detection delay of τ periods are independently detected with probability α .
- 4. New quarantines are enacted based on decisions made in step one of the process in this time period. Quarantines that have taken place for θ periods end.

A node that becomes infected in period t with a detection delay of τ and total disease length θ , is 293 tested in period $t + \tau$, results are processed in $t + \tau + 1$, and they will be quarantined (if necessary) 294 starting at the end of $t + \tau + 1$ (under the fourth item above). This means that they have $\tau + 1$ 295 time periods during which they can infect other nodes. For instance, if $\tau = 0$ this allows a node that 296 becomes infected (but that was not already under quarantine for other reasons) one opportunity 297 to infect others. This process reflects that neither detection nor quarantining of individuals (or 298 jurisdictions) happens instantaneously. In addition, we stipulate that the seed node, i_0 is not counted 299 in the quarantining testing and calculations. This is meant to reflect that it may be unclear whether 300 the disease is spreading or not. Nodes that are detected are marked as such until recovery. 301

D. Containment Policies. A random node i_0 is selected and the epidemic begins there. We study the epidemic curve, the number total node-days of infection, and the number of node-days of quarantine for a variety of containment strategies. In all cases, the policymaker does not detect i_0 , to emulate the difficulty of detecting an infection seed in real time.

(k, x) **Policies.** We examine a number of scenarios using the (k, x) policy model outlined in Theorems 1-3.

If a quarantine fails, and there are infections outside of the quarantine radius, the policymaker deals with each escaped infection individually. The policymaker treats each detected case outside of the initial quarantine as a new seed, and immediately quarantines all nodes with the same radius as the initial quarantine.

We begin by picking our threshold for triggering the initial quarantine by using a simple objective function. We minimize a linear combination of the number of infected person periods and quarantined person periods. For all linear combinations where some weight is given to both terms, the optimal threshold is x = 1. The logic is as follows: if the initial quarantine is successful, the number of quarantined person periods will be fixed and also the minimum number of quarantined person periods. Therefore, the problem reduces to minimizing the number of infections, which is done by setting x = 1.

We study three versions of a (k, x) policy. First, we simulate the (k, x) policy with no detection delay and no buffer. Then, we incorporate a detection delay of τ , still using a (k, x) without a buffer. We do not include a buffer because the resulting quarantine on our network with $k = \tau = 3$ would encompass 99.98% of nodes on average, since almost all nodes are within distance 6 of each other. Lastly, we study a (k, x) policy with enforcement failures and no buffer. In this case, a fraction $\epsilon = 0.05$ of nodes do not ever quarantine. While the policymaker is unable to detect the infection seed in real time, once the policymaker decides to quarantine, we give them the advantage of perfect information with knowing the location of i_0 . As a baseline, we set k = 3, but then also examine the case where k = 2.

(k, x) Policies with an Unknown Seed. We also simulate the case where the policymaker is unable 328 to trace back to find the initial seed i_0 to use as the center of the quarantine region. In this case, 329 once at least x cases are detected, the policymaker calculates the pairwise distance between the 330 set of all detected nodes. The most central node is defined as the one with the minimum average 331 distance to the other detected nodes. The policymaker then quarantines all nodes within distance 332 k+1 of the most central node. If there are multiple nodes with the same average distance, the 333 policymaker picks one at random. If the initial quarantine fails, the policymaker proceeds the same 334 way as when they do know i_0 , instituting quarantines of radius k+1 around detected nodes. 335

Again, we examine three cases: the first with with no detection delay, the second introducing a delay (still without a buffer), and the third including enforcement failures. In the third case, a fraction $\epsilon = 0.05$ nodes never quarantine just as with the standard (k, x) policies. Again, we do not include a buffer in any of the simulations as it would result in nearly global quarantines. As in the scenario where the seed is known, we set (k, x) = (3, 1) as a baseline but then also examine the case where (k, x) = (2, 1).

A Global Quarantine Policy. In a global quarantine policy, every node is quarantined for θ periods as soon as at least x = 1 infections are detected globally. We study this in the case with a detection delay, to compare it to the (k, x), reactive, and proactive policies.

Reactive and Proactive Quarantine Policies. For both the reactive and proactive policies, we take each
 location on the graph to be a separate jurisdiction.

Reactive Quarantine Policies. Reactive jurisdictions respond only to detected infections within their own borders. We set x = 1 for all jurisdictions, the most conservative possible threshold, unless otherwise specified.

Proactive Quarantine Policies. Proactive jurisdictions quarantine based on estimated infection rates within their own borders, with estimates that account for the history of infections observed in all jurisdictions and knowledge of the network connection rates. In each period, each jurisdiction ℓ observes the number of actual detected infections at time t, $z_{\ell,t}$, and then calculates their estimated infections w_{ℓ} as follows:

$$w_{\ell,t} = \max\{w_{\ell,t-1} + y_{\ell,t} - r_{\ell,t}, z_{\ell,t}\},\$$

where $y_{\ell,t}$ denotes the number of expected new infections in region ℓ at time t, given the history of infections observed in all jurisdictions and knowledge of the network connection rates, and $r_{\ell,t}$ denotes the number of expected recoveries in ℓ at t. The max updates the infection rate upwards if the estimated infection rate is lower than the actual observation. This is not fully sophisticated, as the adjustment could also backwardly update previous infection rates in light of the new information, but this would require introducing a probability space and more machinery that might improve the proactive policy's accuracy, but would not qualitatively change the results.

Each jurisdiction calculates $y_{\ell,t}$ as:

$$y_{\ell,t} = p \sum_{\substack{\ell' \text{ s.t. } \ell' \text{ not quarantined at t-1}}} m_{\ell'} q_{\ell,\ell'} w_{\ell',t-1}$$

10 of 22Arun G. Chandrasekhar, Paul Goldsmith-Pinkham, Matthew O. Jackson, Samuel Thau

The summation includes the term for spread from ℓ to still within ℓ . If ℓ is quarantined at time t, then $y_{\ell,t} = 0$. Expected recovery at each period $r_{\ell,t}$ is calculated as:

$$r_{\ell,t} = w_{\ell,t-\theta} - w_{\ell,t-\theta-1} + r_{\ell,t-\theta}.$$

Finally, we set $w_{\ell,t} < 0.01$ to be zero, to avoid implementation issues with floating point calculations. Setting a lower value to truncate at would improve the performance of the proactive jurisdiction policies, as they would be more sensitive to detected cases in other jurisdictions. We set $w_{\ell,1} = 0$, for all jurisdictions. Thus, the $w_{\ell,t}$ values remain at zero until at least one infection is detected somewhere.

Uniform and Lax Policies We run two simulation variants for both the proactive and reactive policies: one in which all states are as conservative as possible, setting x = 1 and a second in which four regions set a higher threshold of x = 5. In the proactive case, the lax jurisdictions follow a reactive policy in addition to using the higher threshold value.

We choose x = 5 to simulate lax thresholds. In the United States, New York state issued a stay at home order when 0.07% of the state population was infected, which scaled to our populations of 3500 that is equivalent to a threshold of 2.73 (21, 22). When scaled to match our population of 3500, Florida began re-opening with a threshold of 6.15, and some countries never locked down (22–24). The quarantines in our stylized model are more aggressive, as they cut contact completely.

E. Results and Sensitivity Analysis. We run 10000 simulations with the parameters detailed in the main text: using $\theta = 5$, $\tau = 3$, $\alpha = 0.1$, and $R_0 = 3.5$, plus (k, x) = (3, 1) where appropriate. Each simulation begins with a singular infection, selected uniformly at random. In the simulations where there are lax jurisdictions, four of the forty are selected to be lax uniformly at random. For all the additional sets of parameters reported below, we run 2500 simulations.

We include the results of the simulations detailed in the main text in the tables below. In addition, 376 we run simulations with several sets of varied parameters: first, we take $\alpha = 0.05$ and $\alpha = 0.2$; 377 second we take $\theta = 8$ and $\tau = 5$; finally, we set R_0 equal to 2, 5, and 15 while holding all other 378 parameters fixed. Within the United States, estimates for the detection rate range from 5% to 15%. 379 and in countries with less developed testing infrastructure, the detection rate is undoubtedly lower 380 (17). Because disease parameters are estimated, we use a different estimate of the disease lifespan of 381 COVID-19 (20). We also examine an alternate (k, x) policy, setting (k, x) = (2, 1) and using the 382 disease and detection parameters outlined in the main text, to mimic an attempt at a more targeted 383 intervention. Full results are shown in Tables S2-S7, and in Figure S2. 384

There are two key trends among the single regime policies. While the results from single jurisdiction 385 policies in terms of infection and quarantined person-days are similar, regardless of whether or 386 not the seed is known, knowing the seed node improves the effectiveness of the initial quarantine. 387 This result is consistent with the theory. The similar results in terms of infections and quarantine 388 person days is a result from the overall high effectiveness of the policymaker's response if the initial 389 quarantine fails. Because the policymaker treats every escaped, detected infection as a new seed, 390 no matter how it treated the initial quarantine, the overall results for infection and quarantine 391 person-days are similar. 392

Second, as shown through the visuals of Figure S2, the effectiveness of the single policymaker policies varies depending on the disease parameters. For larger values of R_0 , as demonstrated by the cases where $R_0 = 5$ and $R_0 = 15$, the single policymaker regional quarantine policies perform worse than the proactive, multiple jurisdiction simulations. With high values of R_0 , the single jurisdiction policies perform better in terms of infected person-days, but have significantly more quarantine

Arun G. Chandrasekhar, Paul Goldsmith-Pinkham, Matthew O. Jackson, Samuel Thau 11 of 22

person days. This is because with a high R_0 , precise targeting becomes much more difficult leading to many rounds of ineffective quarantines. In essence, the single jurisdiction is trying its best to halt the spread, but with a regional quarantine fails to get it under control. The multiple jurisdiction setting moves far more slowly, and so does not have the same number of quarantine days (but very similar infections). This is less a product of successful policy, and more a reflection that with $R_0 = 15$, the only real effective policy is complete global quarantine.

There are several notable points about the reactive and proactive policies. First, the relationship 404 between the reactive and proactive policies is robust to different sets of simulation parameters. In 405 all cases, there is a significant gap between the proactive and reactive jurisdictions, along both the 406 number of quarantine and infection person-days. Second, proactive policies are strictly better in 407 terms of infections, regardless of the disease and administration parameters. Third, the impact of lax 408 jurisdictions on quarantined person-days with reactive jurisdictions depends on the set of parameters. 409 When $\alpha = 0.2$, we see that adding lax jurisdictions to reactive policies increases the number of 410 quarantine person-days. However, in all other cases, there are outcomes similar to those described in 411 the main text: because of the high connection rate between jurisdictions, lax jurisdictions serve as 412 super spreaders that cause coincidental large scale shut downs. Finally, lax jurisdictions uniformly 413 increase the number of quarantined person-days for proactive jurisdictions. 414

Finally, we note that decreasing the quarantine radius from k = 3 to k = 2 has large effects on 415 both the number of infection and quarantine person-days, increasing both by orders of magnitude. 416 The more targeted single jurisdiction intervention achieves similar results to the reactive multi-417 jurisdiction policies. Introducing delays and leakage impose a much large cost in terms of both 418 infection and quarantine person-days for the more targeted policy. Knowing the location of the seed 419 still improves the failure rate, but again, the overall results are similar due to the high effectiveness 420 of the policy if the initial quarantine fails. With k = 4, the policy would be extremely large relative 421 to the size-limited networks that we are able to simulate. In fact, it would initially quarantine 422 approximately 54 percent of people, making all the variants look similar. For our relatively small 423 networks the range of radii that that span parts of the network but not a majority of it are limited. 424 On networks with billions of nodes, it would be a much larger range. 425

3. Supplementary Tables

Table S1: Graph Statistics

Property	Value
Average Degree	20.49
Average Local Clustering Coefficient	0.208
Diameter	9
Average Path Length	5.33

Graph statistics for the graph used in all simulations. Similar to real world networks, it is sparse, clustered and has short average distances between nodes.

					-		A	Facenc
					Percent	Infection	Quarantined	⊏scape
R_0	θ	au	α	ϵ	Infected	Person Days	Person Days	Rate
3.5	5	0	0.1	0	0.0276	1384.05	803955.61	0.0953
3.5	5	3	0.1	0	0.226	11282.19	2301413.60	0.458
3.5	5	3	0.1	0.05	0.514	25688.08	6478054.64	0.551
3.5	5	0	0.05	0	0.0684	3421.10	11231131.73	0.225
3.5	5	3	0.05	0	2.81	140667.17	20297075.03	0.623
3.5	5	3	0.05	0.05	7.80	390155.83	66067046.93	0.706
3.5	5	0	0.2	0	0.0097	483.96	698551.61	0.022
3.5	5	3	0.2	0	0.064	3196.86	1024409.97	0.260
3.5	5	3	0.2	0.05	0.096	4794.23	2027933.31	0.352
3.5	8	0	0.1	0	0.0277	2213.92	1243574.65	0.0904
3.5	8	5	0.1	0	0.285	22834.58	4187189.53	0.506
3.5	8	5	0.1	0.05	0.559	44709.41	10653981.92	0.582
2	5	0	0.1	0	0.0611	3057.36	737563.73	0.102
2	5	3	0.1	0	0.149	7473.47	931141.96	0.226
2	5	3	0.1	0.05	0.156	7784.11	1185778.89	0.252
5	5	0	0.1	0	0.027	1349.74	800273	0.074
5	5	3	0.1	0	1.607	80333.14	10826074.49	0.622
5	5	3	0.1	0.05	6.795	339788.66	63996541.26	0.746
15	5	0	0.1	0	0.0849	4245.51	712741.24	0.004
15	5	3	0.1	0	74.615	3730767.57	115033210.96	0.998
15	5	3	0.1	0.05	75.809	3790452.76	187358575.83	1.000

Table S2: (3,1) Regional Policy (Known Seed) Simulation Results

Results for the parameters used in the main text are the average over 10000 simulations. Results for the parameters only used in this section are the average over 2500 simulations. Infection person days and quarantined person days are scaled to be per million individuals. The escape rate is defined as the frequency with which the disease escapes the initial quarantine.

					Percent	Infection	Quarantined	Escape
R_0	θ	au	α	ϵ	Infected	Person Days	Person Days	Rate
3.5	5	0	0.1	0	0.0181	903.66	907418.73	0.191
3.5	5	3	0.1	0	0.209	10425.09	2474174.31	0.524
3.5	5	3	0.1	0.05	0.503	25147.99	6733925.78	0.597
3.5	5	0	0.05	0	0.052	2602.33	1434418.54	0.349
3.5	5	3	0.05	0	2.689	134472.07	20800069.91	0.676
3.5	5	3	0.05	0.05	8.038	401918.94	69666034.17	0.736
3.5	5	0	0.2	0	0.0086	428.81	748090.71	0.067
3.5	5	3	0.2	0	0.061	3056.09	1141315.7	0.329
3.5	5	3	0.2	0.05	0.097	4873.17	2221095.64	0.416
3.5	8	0	0.1	0	0.007	562.29	708870.95	0.09
3.5	8	5	0.1	0	0.228	18237.83	4193253.6	0.555
3.5	8	5	0.1	0.05	0.561	44886.81	11767810.56	0.616
2	5	0	0.1	0	0.0095	477.09	669783.94	0.117
2	5	3	0.1	0	0.029	1427.07	830410.44	0.244
2	5	3	0.1	0.05	0.034	1680.93	996141.17	0.263
5	5	0	0.1	0	0.024	1202.11	952173.23	0.207
5	5	3	0.1	0	1.807	90371.77	12607529.19	0.718
5	5	3	0.1	0.05	7.074	353675.16	66430323.4	0.789
15	5	0	0.1	0	0.1239	6195.7	1248499.49	0.266
15	5	3	0.1	0	73.99	3699513.54	123395786.67	0.998
15	5	3	0.1	0.05	75.482	3774094.57	191925875.01	1.000

 Table S3: (3,1) Regional Policy (Unknown Seed) Simulation Results

Results for the parameters used in the main text are the average over 10000 simulations. Results for the parameters only used in this section are the average over 2500 simulations. Infection person days and quarantined person days are scaled to be per million individuals. The escape rate is defined as the frequency with which the disease escapes the initial quarantine.

						Percent	Infection	Quarantined	Escape
i_0	R_0	θ	au	α	ϵ	Infected	Person Days	Person Days	Rate
Known	3.5	5	0	0.1	0	0.394	19706.76	1147303.53	0.363
Known	3.5	5	3	0.1	0	27.165	1358241.87	105221845.94	0.790
Known	3.5	5	3	0.1	0.05	29.809	1490432.74	119489225.66	0.810
Unknown	3.5	5	0	0.1	0	0.0935	4676.53	1029432.17	0.491
Unknown	3.5	5	3	0.1	0	27.204	1360209.23	108372918.63	0.801
Unknown	3.5	5	3	0.1	0.05	29.983	1499166.90	122945457.44	0.818

Table S4: (2,1) Regional Policy Simulation Results

Results are the average over 2500 simulations. Infection person days and quarantined person days are scaled to be per million individuals. The escape rate is defined as the frequency with which the disease escapes the initial quarantine.

Table S5: Global Policy Simulation Results

R_0	θ	au	α	Percent Infected	Infection Person Days	Quarantined Person Days
3.5	5	3	0.1	0.0778	3890.51	4730000.00
3.5	5	3	0.05	0.1518	7591.79	4702000.00
3.5	5	3	0.2	0.044	2199.23	4716000.00
3.5	8	5	0.1	0.0847	6772.11	7545600.00
2	5	3	0.1	0.0207	1035.57	3708000.00
5	5	3	0.1	0.1937	9685.63	4922000.00
15	5	3	0.1	5.1639	258192.87	500000.00

Results for the parameters used in the main text are the average over 10000 simulations. Results for the parameters only used in this section are the average over 2500 simulations. Infection person days and quarantined person days are scaled to be per million individuals. There are fewer quarantined person days on average with $\alpha = 0.05$, rather than $\alpha = 0.1$ as there is a greater chance of the disease going completely undetected before dying out.

Policy	R_0	θ	τ	α	Percent Infected	Infection Person Days	Quarantined Person Days
Reactive	3.5	5	3	0.1	29.89	1494552.99	131303637.50
Proactive	3.5	5	3	0.1	1.71	85526.78	51328755.00
Reactive	3.5	5	3	0.05	44.91	2245276.69	132165200.00
Proactive	3.5	5	3	0.05	5.45	272265.56	73938850.00
Reactive	3.5	5	3	0.2	10.63	531685.96	59927450.00
Proactive	3.5	5	3	0.2	0.56	27845.97	33333750.00
Reactive	3.5	8	5	0.1	27.66	2213177.60	194385520.00
Proactive	3.5	8	5	0.1	2.50	200369.76	35172320.00
Reactive	2	5	3	0.1	2.03	101275.14	13037500.00
Proactive	2	5	3	0.1	0.20	10104.91	5300750.00
Reactive	5	5	3	0.1	50.74	2537078.07	157829850.00
Proactive	5	5	3	0.1	4.14	206837.40	38021550.00
Reactive	15	5	3	0.1	81.66	4082954.97	16475250.00
Proactive	15	5	3	0.1	71.10	3555090.86	12125500.00

Table S6: Reactive and Proactive Policy Simulation Results

Results for the parameters used in the main text are the average over 10000 simulations. Results for the parameters only used in this section are the average over 2500 simulations. For all simulations, every jurisdiction sets x = 1. Infection person days and quarantined person days are scaled to be per million individuals.

Policy	R_0	θ	τ	α	Percent Infected	Infection Person Days	Quarantined Person Days	Low Threshold Case Fraction
Reactive	3.5	5	3	0.1	34.06	1702933.48	123051062.50	0.853
Proactive	3.5	5	3	0.1	9.19	459435.15	87241700.00	0.724
Reactive	3.5	5	3	0.05	46.16	2308090.83	111742450.00	0.867
Proactive	3.5	5	3	0.05	21.65	1082529.07	133660250.00	0.757
Reactive	3.5	5	3	0.2	19.71	985572.76	101214350.00	0.846
Proactive	3.5	5	3	0.2	1.93	96453.34	36203450.00	0.748
Reactive	3.5	8	5	0.1	32.78	2622535.7	192823440.00	0.852
Proactive	3.5	8	5	0.1	11.99	958939.79	138729440.00	0.761
Reactive	2	5	3	0.1	6.76	337947.53	34866850.00	0.857
Proactive	2	5	3	0.1	1.62	81059.37	19606550.00	0.810
Reactive	5	5	3	0.1	53.23	2661322.79	139446200.00	0.863
Proactive	5	5	3	0.1	10.67	533748.29	69943200.00	0.717
Reactive	15	5	3	0.1	83.63	4181626.60	15395600.00	0.885
Proactive	15	5	3	0.1	73.66	3683186.66	10949990.00	0.871

Table S7: Reactive and Proactive Policies with Lax Jurisdictions Simulation Results

Results for the parameters used in the main text are the average over 10000 simulations. Results for the parameters only used in this section are the average over 2500 simulations. For all simulations, 36 jurisdictions use x = 1 and the lax remainder use x = 5. In the proactive case, jurisdictions with x = 5 follow reactive policies. Infection person days and quarantined person days are scaled to be per million individuals.

427 4. Supplementary Figures

Figure S1: Growth Balance

(a) Regional Policy Fails

(b) Regional Policy Succeeds

Figure s1: Panel (a) demonstrates the possible failure of growth balance. The infection escapes up the line undetected beyond the quarantine radius. If the infection happens to spread downwards, as in Panel (b), it is much more likely to be detected. However, that only happens with some moderate probability in this network, and so growth balance fails.

Arun G. Chandrasekhar, Paul Goldsmith-Pinkham, Matthew O. Jackson, Samuel Thau 17 of 22

Figure S2: Impact and Costs of Quarantines with Different Simulation Parameters

This figure plots the number of person-days of quarantine (per million) and the number of person-days of infection (per million) for seven different policy scenarios. Both single jurisdiction policies include leakage of a fraction $\epsilon = 0.05$ people who never quarantine. Simulations in (a) are the average from 10000 simulations, while in (b)-(g), the results are the average over 2500 simulations.

Figure S3: The Impact of Delay and Leakage on a (k, x) = (2, 1) Policy

We picture daily infections and cumulative recoveries under three scenarios. As in the main text, we take $\theta = 5$, $\tau = 3$, $\alpha = 0.1$ and $R_0 = 3.5$. The entire network is governed by a single policymaker using a (k, x) = (2, 1)-regional quarantine. In Panel (a), there is no detection delay and no leakage. In Panel (b), we introduce a detection delay of $\tau = 3$. Panel (b) adds leakage to the setup of Panel (c), by having a randomly selected fraction $\epsilon = 0.05$ never quarantine. For each figure, we simulate 2500 times on the same network with random initial infections, and present the average number of infections and recovered people over time, scaled per million.

We examine the (k, x) = (2, 1) policy scenario in contrast with other policy options, using $\theta = 5$, $\tau = 3$, $\alpha = 0.1$ and $R_0 = 3.5$. All of the (k, x) regional policies include a fraction $\epsilon = 0.05$ of people who never quarantine. Using a smaller radius of k = 2 with all parameters held fix is significantly less effective than with k = 3, along both the number of person-days of infection and quarantine. Note that the (k, x) = (2, 1) policies are simulated 2500 times, while the rest are simulated 10000 times.

428 References

- J Ugander, B Karrer, L Backstrom, J Kleinberg, Graph cluster randomization: Network exposure to multiple universes in *Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining*. pp. 329–337 (2013).
- 2. PD Hoff, AE Raftery, MS Handcock, Latent space approaches to social network analysis. J.
 Am. Stat. Assoc. 97:460, 1090–1098 (2002).
- 3. M Penrose, Random geometric graphs. (Oxford university press) Vol. 5, (2003).
- 435
 4. J Leskovec, KJ Lang, A Dasgupta, MW Mahoney, Statistical properties of community structure in large social and information networks in *Proceedings of the 17th International Conference on* World Wide Web. pp. 695–704 (2008).
- 5. AV Banerjee, AG Chandrasekhar, E Duflo, MO Jackson, Diffusion of microfinance. *Science*341, DOI: 10.1126/science.1236498, July 26 2013 (2013).
- 6. AG Chandrasekhar, MO Jackson, A network formation model based on subgraphs. SSRN
 https://ssrn.com/abstract=2660381 (2016).
- 442 7. LAN Amaral, A Scala, M Barthelemy, HE Stanley, Classes of small-world networks. *Proc. Natl.* 443 Acad. Sci. 97, 11149–11152 (2000).
- 8. F Chung, L Lu, The average distances in random graphs with given expected degrees. *Proc. Natl. Acad. Sci.* 99, 15879–15882 (2002).
- 9. E Breza, AG Chandrasekhar, TH McCormick, M Pan, Using aggregated relational data to
 feasibly identify network structure without network data. Am. Econ. Rev. Forthcoming
 (2019).
- 10. P Erdös, A Rényi, On random graphs. Publ. Math. Debrecen 6, 156 (1959).
- ⁴⁵⁰ 11. DJ Watts, SH Strogatz, Collective dynamics of 'small-world' networks. *Nature* **393**, 440–442
 ⁴⁵¹ (1998).
- 12. TH McCormick, MJ Salganik, T Zheng, How many people do you know?: Efficiently estimating
 personal network size. J. Am. Stat. Assoc. 105, 59–70 (2010).
- AV Banerjee, AG Chandrasekhar, E Duflo, MO Jackson, Changes in social network structure in response to exposure to formal credit markets. SSRN https://ssrn.com/abstract=3772604 (2018).
- ⁴⁵⁷ 14. L Beaman, A BenYishay, J Magruder, AM Mobarak, Can network theory-based targeting
 ⁴⁵⁸ increase technology adoption? Am. Econ. Rev. (2020).
- A Banerjee, et al., Messages on COVID-19 prevention in india increased symptoms reporting
 and adherence to preventive behaviors among 25 million recipients with similar effects on
 non-recipient members of their communities. SSRN https://ssrn.com/abstract=3649860 (2020).
- 462 16. X Hao, et al., Reconstruction of the full transmission dynamics of COVID-19 in Wuhan. Nature,
 463 1-7 (2020).
- ⁴⁶⁴ 17. A Hortaçsu, J Liu, T Schwieg, Estimating the fraction of unreported infections in epidemics
 ⁴⁶⁵ with a known epicenter: an application to COVID-19. J. Econom. 220, 106–129 (2021).
- 18. R Li, et al., Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science 368, 489–493 (2020).
- 19. SA Lauer, et al., The incubation period of coronavirus disease 2019 (COVID-19) from publicly
 reported confirmed cases: estimation and application. Annals Intern. Medicine 172, 577–582
 (2020).
- 20. NW Furukawa, JT Brooks, J Soble, Evidence supporting transmission of severe acute respiratory
 syndrome coronavirus 2 while presymptomatic or asymptomatic. *Emerg. Infect. Dis.* 26 (2020).
- 473 21. A Cuomo, Continuing temporary suspension and modification of laws

Arun G. Chandrasekhar, Paul Goldsmith-Pinkham, Matthew O. Jackson, Samuel Thau 21 of 22

relating to the disaster emergency (https://www.governor.ny.gov/news/
 no-2028-continuing-temporary-suspension-and-modification-laws-relating-disaster-emergency)
 (2020).

- 477 22. The COVID Tracking Project, Totals by state (2020).
- 23. R DeSantis, Phase 1: Safe. Smart. Step-by-step. Plan for Florida's recovery (https://www.flgov.
 com/wp-content/uploads/2020/04/EO-20-112.pdf) (2020).
- 480 24. Emergency Information from Swedish Authorities, Restrictions and prohibitions
- (https://www.krisinformation.se/en/hazards-and-risks/disasters-and-incidents/2020/
- official-information-on-the-new-coronavirus/restriktioner-och-forbud) (2020).