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Supporting Information Text10

1. Theorem Details and Proofs11

A. Model and Definitions.12

People and Interactions.There are n > 1 nodes (individuals) in an unweighted, and possibly directed,13

network.14

We study the course of a disease through the network. Time is discrete, with periods indexed by15

t ∈ N. An initial infected node, indexed by i0 ∈ V , is the only node infected at time 0. We call this16

node the seed.17

We track the network via neighborhoods that expand outwards via (directed) paths from i0. Let18

Nk be all the nodes who are at (directed) distance k from node i0. Let nk denote the cardinality of19

Nk.20

For any node in j ∈ Nk′ , for k′ < k, let nj be the number of its direct descendants and njk be21

the number of its (possibly indirect) descendants in Nk that are reached by never passing beyond22

distance k from i0.23

Unweighted network models are admitted here. Additionally, the results below extend to any24

weighted model in which weights are bounded above and below (e.g., probabilities of interaction).25

Note also, that the network can be directed or undirected.26

The infection process proceeds as follows. In every time period t ∈ {1, 2, . . .}, an infected node i27

transmits the disease to each of i’s neighbors independently with probability p. A newly infected28

node is infectious for θ ≥ 1 periods after which the node recovers and is never again infectious. The29

model can easily be extended to accommodate renewed susceptibility.30

There may be a delay in the ability to detect the disease. The number of periods of delay is given31

by τ with 0 ≤ τ ≤ θ. Delay is a general term that can capture many things. For example, it can32

correspond to (a) asymptomatic infectiousness, (b) a delay in accessing health care given the onset33

of an infectious period, (c) any delay in the administration of testing, and so on.34

In the first period of an infected node’s infectious period – after delay (τ) – there is a probability35

α that the policymaker detects it as being infected. So, potential detection happens exactly once36

during the first period in which the node can be detected. Detection is independently and identically37

distributed. Our results are easily extended to have a random period for detection after the delay.38

Finally, the policymaker may face some error in their knowledge of the network. This can come39

from their limited enforcement capacity, random noise in data collected to estimate interaction40

networks, or from network model misspecification. If there is error, we will track a share ε of nodes41

that are within a k-neighborhood of the seed but are estimated by the policymaker to be outside42

the k-neighborhood.43

Regional Quarantine Policy.Let a regional policy of distance k and threshold x be such that once44

there are at least x infections (other than the seed) detected within distance k from the initial seed,45

then all nodes within distance k+ 1 of i0 are quarantined for at least θ periods. A quarantine implies46

all connections between nodes are severed to avoid any further transmission, the infection lasts its47

duration θ and dies out.48

Implicit in this definition is that a quarantine is not instantaneous, but that infected people could49

have infected their neighbors before being shut down, which is why the nodes at distance k + 1 are50

quarantined. All the results below extend if we assume that it is instantaneous, but with quarantines51

moved back one step and path lengths in definitions correspondingly adjusted.52
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We have assumed the policymaker knows the “seed,” for simplicity - but this knowledge may53

take some time in reality. This provides an advantage to the policymaker, but we see substantial54

containment failures despite this advantage.55

Growth Balance. In order to conduct asymptotic analysis, a useful device to study the probabilities56

of events in question in large networks, we study a sequence of networks G(n) with n→∞ and an57

associated sequence of parameters (α, p, τ, θ, k) = (α(n), p(n), τ(n), θ(n), k(n)).58

Consider a network and a distance k from the initially infected node i0. A path of potential59

infection to k + 2 is a sequence of nodes i0, i1, . . . i` with i` ∈ Nk+1, ij+1 being a direct descendant of60

ij for each j ∈ {0, . . . , `− 1}, and for which i` has a descendant in Nk+2.61

Consider a sequence of networks and k(n)s. We say that there are bounded paths of potential62

infection from i0(n) to k(n)+2 if there exists some finiteM and for each n there is a path of potential63

infection to k(n) + 2, i0(n), i1, . . . i` of length less than M , with nij < M for every j ∈ {0, . . . , `− 2}.64

We say that a sequence of networks is growth-balanced relative to some k(n) (and sequence of65

i0(n)) if there are no bounded paths of potential infection to k(n) + 2. This is equivalent to stating66

that there exists a sequence m(n) → ∞ such that each path of potential infection from i0(n) to67

k(n) + 2 is either of length at least m(n) or has some node with degree at least m(n).68

If k(n) grows without bound, then the condition is satisfied trivially, so the bounded case is the69

one of interest; it is also the one of practical interest given the small diameter of real-world networks.70

Also note that the condition is stated with respect to a sequence of seed nodes. The results extend71

directly if one wants things to hold with respect to sets of seeds by requiring that the conditions72

hold for sequences of sets of seeds.73

Growth balance is essentially a condition that requires a minimum bound of expansion along all74

potential paths of infection to escape a regional quarantine from some initial infection. The intuition75

behind the condition is clear: to ensure detection of an outbreak before it reaches a distance k + 176

from the seed, many of the nodes within distance k must be exposed to the disease by the time it77

reaches distance k. What is ruled out is a relatively short path that gets directly to that distance78

without having many nodes be exposed along that path.∗79

Figure S1 presents an illustration of a network that is not growth-balanced.80

B. Results.81

A Benchmark: No Delay in Detection; Perfect Information and Enforcement.We begin with a benchmark82

case in which there is no delay in detection (τ(n) = 0) and the policymaker can completely enforce83

a quarantine at some distance k(n) + 1.†84

We allow the size of the quarantine region k to depend on n in any way, as the theorem still85

applies. We work with an arbitrary but fixed infection threshold x. What is important is that x not86

grow too rapidly, as otherwise the likelihood of observing x infections within proximity k to the seed87

is extremely low.‡88

Theorem 1. Consider any sequence of networks and associated k(n) < K(n)− 1 where K(n) is89

the maximum k(n) for which nk > 0;§ such that each node in Nk(n)+1 has at least one descendent at90

distance k(n) + 2, and let x be any fixed positive integer. Let the sequence of associated diseases have91

∗
This is very different from conditions that concern long paths within short distances, such as (1), as ours is ruling out short paths with low expansion.

†
Note that this requires knowledge of the neighborhood structure around the seed node, but no other knowledge of the network by a policymaker.

‡
The theorem extends to allow x = x(n) to grow with n, provided the growth is sufficiently slow. Then that growth balance condition becomes more complicated, as the M = M(n) in the definition
adjusts with the rate of growth of x.

§
Otherwise, it is actually a global policy.
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α(n) and p(n) bounded away from 0 and 1,¶ no delay in detection, and any θ(n) ≥ 1. A regional92

quarantining policy of distance k(n) and threshold x halts all infections past distance k(n) + 1 with a93

probability tending to 1 if and only if the sequence is growth-balanced with respect to k(n).94

Note that the growth balance condition implies that the number of nodes within distance k(n)95

from i0 must grow without bound. Theorem 1 thus implies that in order for a regional policy to96

work, the region size must grow without bound, and also must satisfy a particular balance condition.97

(Rates at which this growth must occur as a function of k and n, can be deduced from the relevant98

infection probabilities and network structure.)99

Proof of Theorem 1. To prove the first part, note that if the infection never reaches distance k(n)100

then the result holds directly since it can then not go beyond k(n) + 1. We show that if the sequence101

of networks is growth-balanced relative to k(n), then conditional upon an infection reaching level102

k(n) with the possibility of reaching k(n) + 2 within two periods, the probability that it infects more103

than x nodes within distance k(n) before any nodes beyond k(n) tends to 1. Suppose that infection104

reaches some node at distance k(n) that can reach a node in Nk+1. Consider the corresponding105

sequence of paths of infected nodes i0, i1, . . . i` with i` ∈ Nk+1, ij+1 being a direct descendant of106

ij for each j ∈ {0, . . . , ` − 1}, and note that by assumption i` has a descendant in Nk+2. By the107

growth balance condition, for any M , there is a large enough n for which either the length of the108

path is longer than M or else there is at least one ij with j ≤ `− 2 along the path that has more109

than M descendants. In the latter case, the probability that ij has more than x descendants who110

become infected and are detected is at least 1− FM,m(x) where FM,m is the binomial distribution111

with M draws each with probability m, where p(n)α(n) > m for some fixed m. Given that x and m112

are fixed, this tends to probability 1 as M grows. In the former case, the sequence exceeds length113

M , all of which are infected and so given that α(n) is bounded below, the probability that at least114

x of them are detected goes to 1 as M grows. In both cases, as n grows, the minimal M across such115

paths of potential infection to k(n) + 1 grows without bound, and so the probability that there are116

at least x infections that are detected by the time that i`−1 is reached tends to 1 as n grows.117

To prove the converse, suppose that the network is not growth-balanced. Consider a sequence of118

bounded paths of potential infection to k(n) + 2, with associated sequences of nodes i0, i1, . . . i` of119

length less than M with i` ∈ Nk+1, ij+1 being a direct descendant of ij for each j ∈ {0, . . . , `− 1},120

with nj < M for every j ∈ {0, . . . , `−2}, and for which i` has a descendant in Nk+2. The probability121

that each of the nodes i1, . . . i`−2 becomes infected and no other nodes are infected within distance122

k(n)− 1, and that all infected nodes are undetected is at least (p(n)(1− α(n))(1− p(n))M )M . This123

is fixed and so bounded away from 0. This implies that probability that the infection gets to nodes124

at distance k(n), and i`−1 in particular, without any detections is bounded below. Thus, there is a125

probability bounded below of reaching i` before any detections, and then by the time the quarantine126

is enacted, there is at least a p(n) times this probability that it escapes past Nk+1, which is thus127

also bounded away from 0.128

We note that Theorem 1 admits essentially all sequences of (unweighted) networks. Thus, for129

every type of network, one can determine whether a regional policy of some (k(n), x) will succeed or130

fail. The only thing that one needs to check is growth balance. If it is satisfied, a regional policy131

works, and otherwise it will fail with nontrivial probability.132

This has implications for some prominent random network models. Consider a randomly chosen133

sequence of seeds and networks from the associated networks:134

¶
The cases of p(n) or α(n) equal to 1 are degenerate.
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1. For a sequence of stochastic block models in which all nodes have expected degree d(n) > log(n)135

so that the network is path connected (with Erdos-Renyi as a special case),‖ a regional policy136

with a bounded k(n) has a probability going to 1 of halting the disease on the randomly137

realized network if and only if the seed node’s expected out degree d(n) > 1 is such that138

d(n)k(n) →∞.139

2. For a regular expander graph with outdegree d(n) > 1, a regional policy works if and only if140

the expansion rate d(n)k(n) →∞.141

3. For a regular lattice of degree d(n) > 1, a regional policy works if and only if d(n)k(n) →∞.142

4. For a rewired lattice with d(n) > 1 for all nodes and with a fraction links that are randomly143

rewired, a regional policy with a bounded k(n) has a probability going to 1 of halting the144

disease on the randomly realized network if and only if d(n)k(n) →∞.145

5. For a sequence of random networks with a scale-free degree distribution with average degree146

d(n) > log(n), a regional policy works (with probability 1) if and only if k(n)→∞.147

Thus, whether a regional policy works in almost any network model requires that either the degree148

of almost all nodes grows without bound, or else the size of the quarantine grows without bound.149

For a scale free distribution, there is always a nontrivial probability on small degrees, and hence in150

order for a regional policy to work, the size of the neighborhood must grow without bound.151

In practice, even very sparse networks will have a large d(n)k(n) (e.g., if people have hundreds of152

contacts, 1003 is already a million and even with a very low α(n) many infections will be detected153

within a few steps of the initial node).∗∗ What the growth balance condition rules out is that some154

nontrivial part of the network have neighborhoods with many fewer contacts - so there cannot be155

people who have just a few contacts, since that will allow for a nontrivial probability of undetected156

escape (e.g., 23 = 8 and so with only 8 infections, it is possible that none are detected and the disease157

escapes beyond 3 steps). As many real-world network structures have substantial heterogeneity,158

with some people having very low numbers of interactions, such an escape becomes possible even159

under idealized assumptions of no delay in detection and no leakage (2–6).160

Delay in Detection.The detection delay, τ(n), is distributed over the support {1, . . . , τmax(n)}. This161

includes degenerate distributions with τmax(n) being the maximal value of the support with positive162

mass. The policymaker may or may not know τmax(n) and we study both cases. The latter is163

important as in practice we estimate delay periods so there is bound to be uncertainty. When τ(n)164

is known, we can simply say τ(n) = τmax(n).165

Let a regional policy with trigger k(n), threshold x, and buffer h(n) be such that once there are at166

least x infections detected within distance k(n) + h(n) from the initial seed, then all nodes within167

distance k(n) + h(n) + 1 of i0 are quarantined/locked down for at least θ(n) periods.168

There are two differences between this definition of regional policy from the one considered before.169

First, it is triggered by infections within distance k(n) + h(n) (not within distance k(n)), and it also170

has a buffer in how far the quarantine extends beyond the k(n)-th neighborhood.171

We extend the definition of growth balance to account for buffers.172

Consider a network and a distance k(n) from the initially infected node i0 and an h(n) ≥ 1. A path173

of potential infection to k(n) + h(n) + 2 is a sequence of nodes i0, i1, . . . i` with i` ∈ Nk(n)+h(n)+1,174

ij+1 being a direct descendant of ij for each j ∈ {0, . . . , `− 1}.175

‖
Consider a sequence of block models such that the ratio of expected out degree of a node in one neighborhood compared to another in some other block cannot grow without bound.

∗∗
This is still extremely sparse, as having 100 contacts out of millions or billions of potential other nodes is a small fraction.
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Consider a sequence of networks, n, and associated k(n), h(n). We say that there are bounded176

paths of potential infection to k(n) + h(n) + 2 if there exists some finite M and for each n there is a177

path of potential infection to k(n) + h(n) + 2, i0, i1, . . . i` of length less than M , with nj < M for178

every j ∈ {0, . . . , `− h(n)− 2}. We say that a sequence of networks is growth-balanced relative to179

some k(n) and buffers h(n) if there are no bounded paths of potential infection to k(n) + h(n) + 2.180

Theorem 2. Consider a sequence of diseases that have α(n) and p(n) bounded away from 0 and181

1, θ(n) ≥ 1, and have a detection delay distributed over some set {1, . . . , τmax(n)} with τmax > 1182

(with probability on τmax(n) bounded away from 0).†† Consider any sequence of networks and183

k(n) < K(n) − τmax(n) − 1 where K(n) is the maximum k(n) for which nk > 0, such that each184

node in Nk′ for k(n)′ > k(n) has at least one descendent at distance k(n)′ + 1, and let x be any185

fixed positive integer. A regional policy with trigger k(n), threshold x, and buffer τmax(n) halts all186

infections past distance k(n) + τmax(n)+1 with a probability tending to 1 if and only if the sequence187

is growth-balanced with respect to k(n).188

The Proof of Theorem 2 is a straightforward extension of the previous proof and so it is omitted.189

This result shows several things. First, if the detection delay is small relative to the diameter190

of the graph, one can use a regional quarantine policy – adjusted for the detection delay – along191

the lines of that from Theorem 1 and ensure no further spread. This is true even if the period is192

stochastic as long as the upper bound is known to be small.193

Second, in contrast, if the detection delay is large compared to the diameter of the graph, then194

a regional policy is insufficient. By the time infections are observed, it is too late to quarantine a195

subset of the graph. This condition will tend to bind in the case of real world networks, as they196

exhibit small world properties and have small diameters (7, 8). As a result, even short detection197

delays may correspond to rapidly moving wavefronts that spread undetected.198

Leakage in the Quarantine.Next we turn to the case of in which there is some leakage in the quarantine,199

which may happen for a variety of reasons. First, the policymaker may have measurement error in200

knowledge of the network structure and thus who should be quarantined. Second, and distinctly,201

lockdowns are imperfect, and some transmission still happens. Third, the network may cross202

jurisdictional borders and some nodes within distance k(n) of i0 may be outside of the policymaker’s203

jurisdiction.204

To keep the analysis uncluttered, we assume no detection delay, but the arguments extend directly205

to the delay case with the appropriate buffer.206

Theorem 3. Consider any sequence of networks. Let the sequence of associated diseases have α(n)207

and p(n) bounded away from 0 and 1, and be such that θ(n) ≥ 1, with no detection delay. Consider208

any k(n) < K(n)− 1 where K is the maximum k(n) for which nk > 0, and suppose that each node209

in Nk(n) has at least one descendent at distance k(n) + 1, and let x be any positive integer.210

Suppose that a random share of εn of nodes within distance k(n) of i0 are not included in a regional211

quarantine policy and are connected to nodes of distance greater than k(n) + 1 – because of a lack of212

jurisdiction, misclassification by a policymaker, or lack of complete control over people’s behaviors.‡‡
213

Then:214

1. If εn = o((∑k(n)′≤k(n) nk′)−1) and the network is growth-balanced, then a regional policy of215

distance k(n) and threshold x halts all infections past distance k(n) + 1 with a probability216

tending to 1.217

††
A special case is in which τmax(n) is known.

‡‡
The misclassification can be that if some node within distance k(n) is controlled by the quarantine, but connects to nodes that are not included and were thought to be of greater distance, but then allow
the disease to escape beyond the quarantine.
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2. If εn ≥ min[1/x, η] for all n for some η > 0 or the network is not growth-balanced, then a218

regional policy of distance k(n) and threshold x fails to halt all infections past the regional219

quarantine with a probability bounded away from 0.220

Proof of Theorem 3. Part 1 follows from the fact that if εn = o((∑k(n)′≤k(n) nk′)−1) then the proba-221

bility of having all nodes in Nk correctly identified as being in Nk tends to 1, and then Theorem 1222

can be applied.223

For Part 2, suppose that some x infections are detected. The probability that at least one of them224

is misclassified is at least 1− (1− εn)x. Given that εn ≥ min[1/x, η] for some η > 0, it follows that225

(1− εn)x is bounded away from 1. There is a probability bounded away from 0 that at least one226

of the infected nodes is misclassified, and not subject to the quarantine, and connected to a node227

outside of distance k(n) + 1.228

The theorem implies that the effectiveness of a regional policy is sensitive to any small fixed ε229

amount of leakage.230

2. Simulation Details231

To illustrate the processes described in the main text, we run several simulations. First, we construct232

a large network with many jurisdictions. We directly study the content of the theorems with several233

versions of (k, x) quarantines with a SIR infection process on a network. We use the same process234

and network to show the issues with jurisdictional policies, studying reactive and proactive policies.235

A. Network Model.We model the network structure as follows.236

1. There are L locations distributed uniformly at random on the unit sphere. Each location has237

a population of m nodes with a total of n = mL nodes in the network.238

2. The linking rates across locations are given as in a spatial model (2, 9). The probability of239

nodes i ∈ ` and j ∈ `′ for locations ` 6= `′ linking depends only on the locations of the two240

nodes and declines in distance:241

q`,`′ = exp(a+ b · dist(`, `′))
where dist(`, `′) is the distance between the two locations on the sphere and a, b < 0.242

Every interaction between every pair of nodes is drawn independently from the observed spatial243

distribution, with distances measured along the surface of the unit sphere.244

3. The linking patterns within a location are given as in a mixture of random geometric (RGG)245

(3) and Erdos-Renyi (ER) random graphs (10). Specifically, as spheres are locally Euclidean,246

we model nodes in a location (e.g., in a city) as residing in a square in the tangent space to247

the location. The probability that two nodes within a location link declines in their distance248

in this square.249

We set dRGG as the desired degree from the RGG. Nodes are uniformly distributed on the unit
square [0, 1]2, and links are formed between nodes within radius r` (3). Let d` be the desired
average degree for all nodes within location ` with m` as the population at location `, which
we take as equal for all locations in our exercises. We define

π = d` − dRGG
m`
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which is the probability with which remaining links within location are drawn (i.i.d.). To250

obtain the desired degree we set251

r` =
√
dRGG
m`π

.

4. Next, we uniformly add links to create a small world effect, with identical and independently252

distributed probability s = 1
cn
, where c is an arbitrary constant and n is the total number of253

nodes in the network (11).254

5. Finally, we designate a single location as a “hub,” to emulate the idea that certain metro255

areas may have more connections to all other regions. To do so, we select a hub uniformly at256

random and add links independently and identically distributed with probability h from the257

hub location to every other location.258

6. To avoid the possibility of multiple links between the same two nodes, we remove any duplicate259

links.260

We first take L = 40 and m = 3500 for all locations. We set a = −4 and b = −15. Next, we261

calibrate the network to data by setting d` = 15.5, and dRGG = 13.5 for all locations. Next, we set262

c = 2. Finally, we set h = 2.85× 10−6. This process results in a graph that very roughly emulates263

the connectivity of real world networks in the United States and India (12–15). This includes data264

from India during the COVID-19 lockdowns about interactions within six feet, meaning that it is265

conservative (15).266

We fix this network to use in all versions of the simulations. The network we generate is sparse,267

clustered, and has small average distances, as demonstrated by information detailed in Table S1.268

Finally, we recalculate the connection probability matrix between locations to reflect realized269

rates of connection across regions, denoted by q. The entry that denotes the probability of linking270

between locations ` and `′ is q`,`′ .271

B. Disease Process.We set parameters as follows: the duration of infection is θ, detection delay272

(when incorporated) is τ , and set quarantine thresholds x depending on the simulation.273

We set transmission probability p as274

p = 1−
(

1− R0

d̄

) 1
θ

where d̄ is the mean degree. We take R0 = 3.5, based on estimates of COVID-19 (16).275

Following estimates from the literature (5-15%), we set α = 0.1 (17, 18). In the simulations, each276

node is either detected or not during the first period in which it can be detected. Nodes that are277

detected are classified as such until recovery. Nodes that are undetected remain undetected (and so278

the α probability of detection is realized in the τ + 1st period, and only in that period).279

As outlined in the main text, we begin by using θ = 5 and τ = 3 (17–20).280

C. Simulation Progression.Each time period in the simulation progresses in four parts, which281

happen sequentially. The simulations run as follows:282
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1. The policymakers see the newly detected infections from the previous period, and update their283

estimates of current infections (in all jurisdictions if proactive), and then determine whether284

a quarantine is necessary in their own jurisdiction in the next period (if there is not one285

already in place). This quarantine decision is done based on estimated infections for proactive286

jurisdictions, and internally observed infections for reactive jurisdictions.287

2. The disease progresses for a period. This includes new infections and recoveries.288

3. Infected nodes that have just finished their detection delay of τ periods are independently289

detected with probability α.290

4. New quarantines are enacted based on decisions made in step one of the process in this time291

period. Quarantines that have taken place for θ periods end.292

A node that becomes infected in period t with a detection delay of τ and total disease length θ, is293

tested in period t+ τ , results are processed in t+ τ + 1, and they will be quarantined (if necessary)294

starting at the end of t + τ + 1 (under the fourth item above). This means that they have τ + 1295

time periods during which they can infect other nodes. For instance, if τ = 0 this allows a node that296

becomes infected (but that was not already under quarantine for other reasons) one opportunity297

to infect others. This process reflects that neither detection nor quarantining of individuals (or298

jurisdictions) happens instantaneously. In addition, we stipulate that the seed node, i0 is not counted299

in the quarantining testing and calculations. This is meant to reflect that it may be unclear whether300

the disease is spreading or not. Nodes that are detected are marked as such until recovery.301

D. Containment Policies.A random node i0 is selected and the epidemic begins there. We study the302

epidemic curve, the number total node-days of infection, and the number of node-days of quarantine303

for a variety of containment strategies. In all cases, the policymaker does not detect i0, to emulate304

the difficulty of detecting an infection seed in real time.305

(k, x) Policies.We examine a number of scenarios using the (k, x) policy model outlined in Theorems306

1-3.307

If a quarantine fails, and there are infections outside of the quarantine radius, the policymaker308

deals with each escaped infection individually. The policymaker treats each detected case outside of309

the initial quarantine as a new seed, and immediately quarantines all nodes with the same radius as310

the initial quarantine.311

We begin by picking our threshold for triggering the initial quarantine by using a simple objective312

function. We minimize a linear combination of the number of infected person periods and quarantined313

person periods. For all linear combinations where some weight is given to both terms, the optimal314

threshold is x = 1. The logic is as follows: if the initial quarantine is successful, the number of315

quarantined person periods will be fixed and also the minimum number of quarantined person316

periods. Therefore, the problem reduces to minimizing the number of infections, which is done by317

setting x = 1.318

We study three versions of a (k, x) policy. First, we simulate the (k, x) policy with no detection319

delay and no buffer. Then, we incorporate a detection delay of τ , still using a (k, x) without a buffer.320

We do not include a buffer because the resulting quarantine on our network with k = τ = 3 would321

encompass 99.98% of nodes on average, since almost all nodes are within distance 6 of each other.322

Lastly, we study a (k, x) policy with enforcement failures and no buffer. In this case, a fraction323

ε = 0.05 of nodes do not ever quarantine.324
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While the policymaker is unable to detect the infection seed in real time, once the policymaker325

decides to quarantine, we give them the advantage of perfect information with knowing the location326

of i0. As a baseline, we set k = 3, but then also examine the case where k = 2.327

(k, x) Policies with an Unknown Seed.We also simulate the case where the policymaker is unable328

to trace back to find the initial seed i0 to use as the center of the quarantine region. In this case,329

once at least x cases are detected, the policymaker calculates the pairwise distance between the330

set of all detected nodes. The most central node is defined as the one with the minimum average331

distance to the other detected nodes. The policymaker then quarantines all nodes within distance332

k + 1 of the most central node. If there are multiple nodes with the same average distance, the333

policymaker picks one at random. If the initial quarantine fails, the policymaker proceeds the same334

way as when they do know i0, instituting quarantines of radius k + 1 around detected nodes.335

Again, we examine three cases: the first with with no detection delay, the second introducing336

a delay (still without a buffer), and the third including enforcement failures. In the third case, a337

fraction ε = 0.05 nodes never quarantine just as with the standard (k, x) policies. Again, we do not338

include a buffer in any of the simulations as it would result in nearly global quarantines. As in the339

scenario where the seed is known, we set (k, x) = (3, 1) as a baseline but then also examine the case340

where (k, x) = (2, 1).341

A Global Quarantine Policy. In a global quarantine policy, every node is quarantined for θ periods as342

soon as at least x = 1 infections are detected globally. We study this in the case with a detection343

delay, to compare it to the (k, x), reactive, and proactive policies.344

Reactive and Proactive Quarantine Policies.For both the reactive and proactive policies, we take each345

location on the graph to be a separate jurisdiction.346

Reactive Quarantine Policies. Reactive jurisdictions respond only to detected infections within their347

own borders. We set x = 1 for all jurisdictions, the most conservative possible threshold, unless348

otherwise specified.349

Proactive Quarantine Policies. Proactive jurisdictions quarantine based on estimated infection rates
within their own borders, with estimates that account for the history of infections observed in all
jurisdictions and knowledge of the network connection rates. In each period, each jurisdiction `
observes the number of actual detected infections at time t, z`,t, and then calculates their estimated
infections w` as follows:

w`,t = max{w`,t−1 + y`,t − r`,t, z`,t},

where y`,t denotes the number of expected new infections in region ` at time t, given the history350

of infections observed in all jurisdictions and knowledge of the network connection rates, and r`,t351

denotes the number of expected recoveries in ` at t. The max updates the infection rate upwards if352

the estimated infection rate is lower than the actual observation. This is not fully sophisticated, as353

the adjustment could also backwardly update previous infection rates in light of the new information,354

but this would require introducing a probability space and more machinery that might improve the355

proactive policy’s accuracy, but would not qualitatively change the results.356

Each jurisdiction calculates y`,t as:

y`,t = p
∑

`′ s.t. `′ not quarantined at t-1
m`′q`,`′w`′,t−1
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The summation includes the term for spread from ` to still within `. If ` is quarantined at time t,
then y`,t = 0. Expected recovery at each period r`,t is calculated as:

r`,t = w`,t−θ − w`,t−θ−1 + r`,t−θ.

Finally, we set w`,t < 0.01 to be zero, to avoid implementation issues with floating point calculations.357

Setting a lower value to truncate at would improve the performance of the proactive jurisdiction358

policies, as they would be more sensitive to detected cases in other jurisdictions. We set w`,1 = 0,359

for all jurisdictions. Thus, the w`,t values remain at zero until at least one infection is detected360

somewhere.361

Uniform and Lax Policies We run two simulation variants for both the proactive and reactive policies:362

one in which all states are as conservative as possible, setting x = 1 and a second in which four363

regions set a higher threshold of x = 5. In the proactive case, the lax jurisdictions follow a reactive364

policy in addition to using the higher threshold value.365

We choose x = 5 to simulate lax thresholds. In the United States, New York state issued a stay366

at home order when 0.07% of the state population was infected, which scaled to our populations of367

3500 that is equivalent to a threshold of 2.73 (21, 22). When scaled to match our population of 3500,368

Florida began re-opening with a threshold of 6.15, and some countries never locked down (22–24).369

The quarantines in our stylized model are more aggressive, as they cut contact completely.370

E. Results and Sensitivity Analysis.We run 10000 simulations with the parameters detailed in371

the main text: using θ = 5, τ = 3, α = 0.1, and R0 = 3.5, plus (k, x) = (3, 1) where appropriate.372

Each simulation begins with a singular infection, selected uniformly at random. In the simulations373

where there are lax jurisdictions, four of the forty are selected to be lax uniformly at random. For374

all the additional sets of parameters reported below, we run 2500 simulations.375

We include the results of the simulations detailed in the main text in the tables below. In addition,376

we run simulations with several sets of varied parameters: first, we take α = 0.05 and α = 0.2;377

second we take θ = 8 and τ = 5; finally, we set R0 equal to 2, 5, and 15 while holding all other378

parameters fixed. Within the United States, estimates for the detection rate range from 5% to 15%,379

and in countries with less developed testing infrastructure, the detection rate is undoubtedly lower380

(17). Because disease parameters are estimated, we use a different estimate of the disease lifespan of381

COVID-19 (20). We also examine an alternate (k, x) policy, setting (k, x) = (2, 1) and using the382

disease and detection parameters outlined in the main text, to mimic an attempt at a more targeted383

intervention. Full results are shown in Tables S2-S7, and in Figure S2.384

There are two key trends among the single regime policies. While the results from single jurisdiction385

policies in terms of infection and quarantined person-days are similar, regardless of whether or386

not the seed is known, knowing the seed node improves the effectiveness of the initial quarantine.387

This result is consistent with the theory. The similar results in terms of infections and quarantine388

person days is a result from the overall high effectiveness of the policymaker’s response if the initial389

quarantine fails. Because the policymaker treats every escaped, detected infection as a new seed,390

no matter how it treated the initial quarantine, the overall results for infection and quarantine391

person-days are similar.392

Second, as shown through the visuals of Figure S2, the effectiveness of the single policymaker393

policies varies depending on the disease parameters. For larger values of R0, as demonstrated by the394

cases where R0 = 5 and R0 = 15, the single policymaker regional quarantine policies perform worse395

than the proactive, multiple jurisdiction simulations. With high values of R0, the single jurisdiction396

policies perform better in terms of infected person-days, but have significantly more quarantine397
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person days. This is because with a high R0, precise targeting becomes much more difficult leading398

to many rounds of ineffective quarantines. In essence, the single jurisdiction is trying its best to halt399

the spread, but with a regional quarantine fails to get it under control. The multiple jurisdiction400

setting moves far more slowly, and so does not have the same number of quarantine days (but401

very similar infections). This is less a product of successful policy, and more a reflection that with402

R0 = 15, the only real effective policy is complete global quarantine.403

There are several notable points about the reactive and proactive policies. First, the relationship404

between the reactive and proactive policies is robust to different sets of simulation parameters. In405

all cases, there is a significant gap between the proactive and reactive jurisdictions, along both the406

number of quarantine and infection person-days. Second, proactive policies are strictly better in407

terms of infections, regardless of the disease and administration parameters. Third, the impact of lax408

jurisdictions on quarantined person-days with reactive jurisdictions depends on the set of parameters.409

When α = 0.2, we see that adding lax jurisdictions to reactive policies increases the number of410

quarantine person-days. However, in all other cases, there are outcomes similar to those described in411

the main text: because of the high connection rate between jurisdictions, lax jurisdictions serve as412

super spreaders that cause coincidental large scale shut downs. Finally, lax jurisdictions uniformly413

increase the number of quarantined person-days for proactive jurisdictions.414

Finally, we note that decreasing the quarantine radius from k = 3 to k = 2 has large effects on415

both the number of infection and quarantine person-days, increasing both by orders of magnitude.416

The more targeted single jurisdiction intervention achieves similar results to the reactive multi-417

jurisdiction policies. Introducing delays and leakage impose a much large cost in terms of both418

infection and quarantine person-days for the more targeted policy. Knowing the location of the seed419

still improves the failure rate, but again, the overall results are similar due to the high effectiveness420

of the policy if the initial quarantine fails. With k = 4, the policy would be extremely large relative421

to the size-limited networks that we are able to simulate. In fact, it would initially quarantine422

approximately 54 percent of people, making all the variants look similar. For our relatively small423

networks the range of radii that that span parts of the network but not a majority of it are limited.424

On networks with billions of nodes, it would be a much larger range.425

3. Supplementary Tables426

Table S1: Graph Statistics

Property Value
Average Degree 20.49

Average Local Clustering Coefficient 0.208
Diameter 9

Average Path Length 5.33

Graph statistics for the graph used in all simulations. Similar to real world networks, it is sparse,
clustered and has short average distances between nodes.
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Table S2: (3, 1) Regional Policy (Known Seed) Simulation Results

R0 θ τ α ε
Percent
Infected

Infection
Person Days

Quarantined
Person Days

Escape
Rate

3.5 5 0 0.1 0 0.0276 1384.05 803955.61 0.0953
3.5 5 3 0.1 0 0.226 11282.19 2301413.60 0.458
3.5 5 3 0.1 0.05 0.514 25688.08 6478054.64 0.551

3.5 5 0 0.05 0 0.0684 3421.10 11231131.73 0.225
3.5 5 3 0.05 0 2.81 140667.17 20297075.03 0.623
3.5 5 3 0.05 0.05 7.80 390155.83 66067046.93 0.706

3.5 5 0 0.2 0 0.0097 483.96 698551.61 0.022
3.5 5 3 0.2 0 0.064 3196.86 1024409.97 0.260
3.5 5 3 0.2 0.05 0.096 4794.23 2027933.31 0.352

3.5 8 0 0.1 0 0.0277 2213.92 1243574.65 0.0904
3.5 8 5 0.1 0 0.285 22834.58 4187189.53 0.506
3.5 8 5 0.1 0.05 0.559 44709.41 10653981.92 0.582

2 5 0 0.1 0 0.0611 3057.36 737563.73 0.102
2 5 3 0.1 0 0.149 7473.47 931141.96 0.226
2 5 3 0.1 0.05 0.156 7784.11 1185778.89 0.252

5 5 0 0.1 0 0.027 1349.74 800273 0.074
5 5 3 0.1 0 1.607 80333.14 10826074.49 0.622
5 5 3 0.1 0.05 6.795 339788.66 63996541.26 0.746

15 5 0 0.1 0 0.0849 4245.51 712741.24 0.004
15 5 3 0.1 0 74.615 3730767.57 115033210.96 0.998
15 5 3 0.1 0.05 75.809 3790452.76 187358575.83 1.000

Results for the parameters used in the main text are the average over 10000 simulations. Results for
the parameters only used in this section are the average over 2500 simulations. Infection person days
and quarantined person days are scaled to be per million individuals. The escape rate is defined as the
frequency with which the disease escapes the initial quarantine.
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Table S3: (3, 1) Regional Policy (Unknown Seed) Simulation Results

R0 θ τ α ε
Percent
Infected

Infection
Person Days

Quarantined
Person Days

Escape
Rate

3.5 5 0 0.1 0 0.0181 903.66 907418.73 0.191
3.5 5 3 0.1 0 0.209 10425.09 2474174.31 0.524
3.5 5 3 0.1 0.05 0.503 25147.99 6733925.78 0.597

3.5 5 0 0.05 0 0.052 2602.33 1434418.54 0.349
3.5 5 3 0.05 0 2.689 134472.07 20800069.91 0.676
3.5 5 3 0.05 0.05 8.038 401918.94 69666034.17 0.736

3.5 5 0 0.2 0 0.0086 428.81 748090.71 0.067
3.5 5 3 0.2 0 0.061 3056.09 1141315.7 0.329
3.5 5 3 0.2 0.05 0.097 4873.17 2221095.64 0.416

3.5 8 0 0.1 0 0.007 562.29 708870.95 0.09
3.5 8 5 0.1 0 0.228 18237.83 4193253.6 0.555
3.5 8 5 0.1 0.05 0.561 44886.81 11767810.56 0.616

2 5 0 0.1 0 0.0095 477.09 669783.94 0.117
2 5 3 0.1 0 0.029 1427.07 830410.44 0.244
2 5 3 0.1 0.05 0.034 1680.93 996141.17 0.263

5 5 0 0.1 0 0.024 1202.11 952173.23 0.207
5 5 3 0.1 0 1.807 90371.77 12607529.19 0.718
5 5 3 0.1 0.05 7.074 353675.16 66430323.4 0.789

15 5 0 0.1 0 0.1239 6195.7 1248499.49 0.266
15 5 3 0.1 0 73.99 3699513.54 123395786.67 0.998
15 5 3 0.1 0.05 75.482 3774094.57 191925875.01 1.000

Results for the parameters used in the main text are the average over 10000 simulations. Results for
the parameters only used in this section are the average over 2500 simulations. Infection person days
and quarantined person days are scaled to be per million individuals. The escape rate is defined as the
frequency with which the disease escapes the initial quarantine.

Table S4: (2, 1) Regional Policy Simulation Results

i0 R0 θ τ α ε
Percent
Infected

Infection
Person Days

Quarantined
Person Days

Escape
Rate

Known 3.5 5 0 0.1 0 0.394 19706.76 1147303.53 0.363
Known 3.5 5 3 0.1 0 27.165 1358241.87 105221845.94 0.790
Known 3.5 5 3 0.1 0.05 29.809 1490432.74 119489225.66 0.810

Unknown 3.5 5 0 0.1 0 0.0935 4676.53 1029432.17 0.491
Unknown 3.5 5 3 0.1 0 27.204 1360209.23 108372918.63 0.801
Unknown 3.5 5 3 0.1 0.05 29.983 1499166.90 122945457.44 0.818

Results are the average over 2500 simulations. Infection person days and quarantined person days are
scaled to be per million individuals. The escape rate is defined as the frequency with which the disease
escapes the initial quarantine.
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Table S5: Global Policy Simulation Results

R0 θ τ α
Percent
Infected

Infection
Person Days

Quarantined
Person Days

3.5 5 3 0.1 0.0778 3890.51 4730000.00
3.5 5 3 0.05 0.1518 7591.79 4702000.00
3.5 5 3 0.2 0.044 2199.23 4716000.00
3.5 8 5 0.1 0.0847 6772.11 7545600.00
2 5 3 0.1 0.0207 1035.57 3708000.00
5 5 3 0.1 0.1937 9685.63 4922000.00

15 5 3 0.1 5.1639 258192.87 5000000.00

Results for the parameters used in the main text are the average over 10000 simulations. Results for the
parameters only used in this section are the average over 2500 simulations. Infection person days and
quarantined person days are scaled to be per million individuals. There are fewer quarantined person
days on average with α = 0.05, rather than α = 0.1 as there is a greater chance of the disease going
completely undetected before dying out.

Table S6: Reactive and Proactive Policy Simulation Results

Policy R0 θ τ α
Percent
Infected

Infection
Person Days

Quarantined
Person Days

Reactive 3.5 5 3 0.1 29.89 1494552.99 131303637.50
Proactive 3.5 5 3 0.1 1.71 85526.78 51328755.00

Reactive 3.5 5 3 0.05 44.91 2245276.69 132165200.00
Proactive 3.5 5 3 0.05 5.45 272265.56 73938850.00

Reactive 3.5 5 3 0.2 10.63 531685.96 59927450.00
Proactive 3.5 5 3 0.2 0.56 27845.97 33333750.00

Reactive 3.5 8 5 0.1 27.66 2213177.60 194385520.00
Proactive 3.5 8 5 0.1 2.50 200369.76 35172320.00

Reactive 2 5 3 0.1 2.03 101275.14 13037500.00
Proactive 2 5 3 0.1 0.20 10104.91 5300750.00

Reactive 5 5 3 0.1 50.74 2537078.07 157829850.00
Proactive 5 5 3 0.1 4.14 206837.40 38021550.00

Reactive 15 5 3 0.1 81.66 4082954.97 16475250.00
Proactive 15 5 3 0.1 71.10 3555090.86 12125500.00

Results for the parameters used in the main text are the average over 10000 simulations. Results for
the parameters only used in this section are the average over 2500 simulations. For all simulations,
every jurisdiction sets x = 1. Infection person days and quarantined person days are scaled to be per
million individuals.
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Table S7: Reactive and Proactive Policies with Lax Jurisdictions Simulation Results

Policy R0 θ τ α
Percent
Infected

Infection
Person Days

Quarantined
Person Days

Low Threshold
Case Fraction

Reactive 3.5 5 3 0.1 34.06 1702933.48 123051062.50 0.853
Proactive 3.5 5 3 0.1 9.19 459435.15 87241700.00 0.724

Reactive 3.5 5 3 0.05 46.16 2308090.83 111742450.00 0.867
Proactive 3.5 5 3 0.05 21.65 1082529.07 133660250.00 0.757

Reactive 3.5 5 3 0.2 19.71 985572.76 101214350.00 0.846
Proactive 3.5 5 3 0.2 1.93 96453.34 36203450.00 0.748

Reactive 3.5 8 5 0.1 32.78 2622535.7 192823440.00 0.852
Proactive 3.5 8 5 0.1 11.99 958939.79 138729440.00 0.761

Reactive 2 5 3 0.1 6.76 337947.53 34866850.00 0.857
Proactive 2 5 3 0.1 1.62 81059.37 19606550.00 0.810

Reactive 5 5 3 0.1 53.23 2661322.79 139446200.00 0.863
Proactive 5 5 3 0.1 10.67 533748.29 69943200.00 0.717

Reactive 15 5 3 0.1 83.63 4181626.60 15395600.00 0.885
Proactive 15 5 3 0.1 73.66 3683186.66 10949990.00 0.871

Results for the parameters used in the main text are the average over 10000 simulations. Results for
the parameters only used in this section are the average over 2500 simulations. For all simulations, 36
jurisdictions use x = 1 and the lax remainder use x = 5. In the proactive case, jurisdictions with x = 5
follow reactive policies. Infection person days and quarantined person days are scaled to be per million
individuals.
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4. Supplementary Figures427

Figure S1: Growth Balance

(a) Regional Policy Fails (b) Regional Policy Succeeds

Figure S1: Panel (a) demonstrates the possible failure of growth balance. The infection escapes up the line
undetected beyond the quarantine radius. If the infection happens to spread downwards, as in Panel (b), it is
much more likely to be detected. However, that only happens with some moderate probability in this network,
and so growth balance fails.
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Figure S2: Impact and Costs of Quarantines with Different Simulation Parameters
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(g)

Single jurisdiction, global quarantine
Single jurisdiction, (3,1) regional quarantine, known seed
Single jurisdiction, (3,1) regional quarantine, unknown seed
Multiple jurisdictions, reactive
Multiple jurisdictions, proactive
Multiple jurisdictions, reactive w/ lax neighbors
Multiple jurisdictions, proactive w/ lax neighbors

This figure plots the number of person-days of quarantine (per million) and the number of person-days of infection (per million) for seven different policy scenarios. Both
single jurisdiction policies include leakage of a fraction ε = 0.05 people who never quarantine. Simulations in (a) are the average from 10000 simulations, while in (b)-(g),
the results are the average over 2500 simulations.
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Figure S3: The Impact of Delay and Leakage on a (k, x) = (2, 1) Policy
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(a) (k, x) = (2, 1)-quarantine with no delay in detection and no leakage
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(b) (k, x) = (2, 1)-quarantine policy with a detection delay of 3 periods
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(c) (k, x) = (2, 1)-quarantine policy with a detection delay of 3 periods and leakage

We picture daily infections and cumulative recoveries under three scenarios. As in the main text, we take θ = 5, τ = 3, α = 0.1 and R0 = 3.5. The entire network is
governed by a single policymaker using a (k, x) = (2, 1)-regional quarantine. In Panel (a), there is no detection delay and no leakage. In Panel (b), we introduce a detection
delay of τ = 3. Panel (b) adds leakage to the setup of Panel (c), by having a randomly selected fraction ε = 0.05 never quarantine. For each figure, we simulate 2500 times
on the same network with random initial infections, and present the average number of infections and recovered people over time, scaled per million.
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Figure S4: Impact and Costs of Different (k, x) Policies
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We examine the (k, x) = (2, 1) policy scenario in contrast with other policy options, using θ = 5, τ = 3, α = 0.1 and R0 = 3.5. All of the (k, x) regional policies
include a fraction ε = 0.05 of people who never quarantine. Using a smaller radius of k = 2 with all parameters held fix is significantly less effective than with k = 3, along
both the number of person-days of infection and quarantine. Note that the (k, x) = (2, 1) policies are simulated 2500 times, while the rest are simulated 10000 times.
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